skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inverse Cascade Evidenced by Information Entropy of Passive Scalars in Submerged Canopy Flows
Abstract Turbulent mixing of scalars within canopies is investigated using a flume experiment with canopy‐like rods of heighthmounted to the channel bed. The data comprised a time sequence of high‐resolution images of a dye recorded in a plane parallel to the bed atz/h= 0.2. Image processing shows that von Kármán wakes shed by canopy drag and downward turbulent transport from upper canopy layers impose distinct scaling regimes on the scalar spectrum. Measures from information theory are then used to explore the dominant directionality of the interaction between small and large scales underlying these two spectral regimes, showing that the arrival of sweeps from aloft establishes an inertial‐range spectrum with forward “information” cascade. In contrast, wake growth with downstream distance leads to persistent upscale transfer (inverse cascade) of scalar variance, which hints at their nondiffusive character and the significance of the stem diameter as an active length scale in canopy turbulence.  more » « less
Award ID(s):
1644382 1754893
PAR ID:
10455025
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
9
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we revisit the spectral transfer model for the turbulent intensity in passive scalar transport (under large-scale anisotropic forcing), and a subsequent modification to the scaling of scalar variance cascade is presented. From the modified spectral transfer model, we obtain a revised scalar transport model using a fractional-order Laplacian operator that facilitates the robust inclusion of the non-local effects originating from large-scale anisotropy transferred across the multitude of scales in the turbulent cascade. We provide ana prioriestimate for the non-local model based on the scaling analysis of the scalar spectrum, and later examine our developed model through direct numerical simulation. We present a detailed analysis on the evolution of the scalar variance, high-order statistics of the scalar gradient and important two-point statistical metrics of the turbulent transport to make a comprehensive comparison between the non-local model and its standard version. Finally, we present an analysis that seamlessly reconciles the similarities between the developed model with the fractional-order subgrid-scale scalar flux model for large-eddy simulation (Akhavan-Safaeiet al.,J. Comput. Phys., vol. 446, 2021, 110571) when the filter scale approaches the dissipative scales of turbulent transport. In order to perform this task, we employ a Gaussian process regression model to predict the model coefficient for the fractional-order subgrid model. 
    more » « less
  2. Abstract Velocity and forces on individual plants were measured within an emergent canopy with real plant morphology and used to develop predictions for the vertical profiles of velocity and turbulent kinetic energy (TKE). Two common plant species,Typha latifoliaandRotala indica, with distinctive morphology, were considered.Typhahas leaves bundled at the base, andRotalahas leaves distributed over the length of the central stem. Compared to conditions with a bare bed and the same velocity, theTKEwithin both canopies was enhanced. For theTyphacanopy, for which the frontal area increased with distance from the bed, the velocity, integral length‐scale, andTKEall decreased with distance from the bed. For theRotala, which had a vertically uniform distribution of biomass, the velocity, integral length‐scale, andTKEwere also vertically uniform. A turbulence model previously developed for random arrays of rigid cylinders was modified to predict both the vertical distribution and the channel‐average ofTKEby defining the relationship between the integral length‐scale and plant morphology. The velocity profile can also be predicted from the plant morphology. Combining with the new turbulence model, theTKEprofile was predicted from the channel‐average velocity and plant frontal area. 
    more » « less
  3. null (Ed.)
    Mean flow and turbulence measurements collected in a shallow Halodule wrightii shoal grass fringe highlighted significant heterogeneity in hydrodynamic effects over relatively small spatial scales. Experiments were conducted within the vegetation canopy (~4 cm above bottom) for relatively sparse (40% cover) and dense (70% cover) vegetation, with reference measurements collected near the bed above bare sediment. Significant benthic velocity shear was observed at all sample locations, with canopy shear layers that penetrated nearly to the bed at both vegetated sites. Turbulent shear production (P) was balanced by turbulent kinetic energy dissipation (ϵ) at all sample locations (P/ϵ≈1), suggesting that stem-generated turbulence played a minor role in the overall turbulence budget. While the more sparsely vegetated sample site was associated with enhanced channel-to-shore velocity attenuation (71.4 ± 1.0%) relative to flows above bare sediment (51.7 ± 2.2%), unexpectedly strong cross-shore currents were observed nearshore in the dense canopy (VNS), with magnitudes that were nearly twice as large as those measured in the main channel (VCH; VNS/VCH¯ = 1.81 ± 0.08). These results highlight the importance of flow steering and acceleration for within- and across-canopy transport, especially at the scale of individual vegetation patches, with important implications for nutrient and sediment fluxes. Importantly, this work represents one of the first hydrodynamic studies of shoal grass fringes in shallow coastal estuaries, as well as one of the only reports of turbulent mixing within H. wrightii canopies. 
    more » « less
  4. Abstract The subgrid-scale (SGS) scalar variance represents the “unmixedness” of the unresolved small scales in large-eddy simulations (LES) of turbulent flows. Supersaturation variance can play an important role in the activation, growth, and evaporation of cloud droplets in a turbulent environment, and therefore efforts are being made to include SGS supersaturation fluctuations in microphysics models. We present results from a priori tests of SGS scalar variance models using data collected in turbulent Rayleigh–Bénard convection in the Michigan Tech Pi chamber for Rayleigh numbers Ra ∼ 108–109. Data from an array of 10 thermistors were spatially filtered and used to calculate the true SGS scalar variance, a scale-similarity model, and a gradient model for dimensionless filter widths ofh/Δ = 25, 14.3, and 10 (wherehis the height of the chamber and Δ is the spatial filter width). The gradient model was found to have fairly low correlations (ρ∼ 0.2), with the most probable values departing significantly from the one-to-one line in joint probability density functions (JPDFs). However, the scale-similarity model was found to have good behavior in JPDFs and was highly correlated (ρ∼ 0.8) with the true SGS variance. Results of the a priori tests were robust across the parameter space considered, with little dependence on Ra andh/Δ. The similarity model, which only requires an additional test filtering operation, is therefore a promising approach for modeling the SGS scalar variance in LES of cloud turbulence and other related flows. 
    more » « less
  5. Abstract Freshwater mussels are dominant ecosystem engineers in many streams throughout North America, yet they remain among the world's most imperiled fauna. Extensive research has quantified the ecological role of mussels in aquatic habitats, but little is known about the interaction between mussels and their surrounding physical and hydrodynamic habitat. Here the physical interactions of mussels with near‐bed flow are investigated in an experimental channel using model mussels. The results show that (1) mussels disrupt the distributions and magnitudes of time‐averaged values of longitudinal flow velocity and Reynolds shear stress depending on mussel density, and (2) at densities of approximately 25 mussels m−2and greater, a hydrodynamic transition occurs where the maximum Reynolds shear stress is displaced from the bed to the height of the mussel canopy, near‐bed longitudinal flow velocity is reduced, and average turbulent shear stresses acting on the mussels are reduced by as much as 64%, thus markedly decreasing the dislodgement potential of the mussels by these stresses. These results provide strong empirical evidence for a positive density‐dependent effect related to flow‐organism interactions and their ecological success, such as enhancing river bed hydrodynamic habitat complexity or decreasing the turbulent shear stresses acting to dislodge mussels from the river bed. This information will improve the understanding of the long‐term persistence of mussel beds and help focus future conservation strategies. 
    more » « less