Anionic carboxylated cellulose nanofibers (CNF) are effective media to remove cationic contaminants from water. In this study, sustainable cationic CNF-based adsorbents capable of removing anionic contaminants were demonstrated using a simple approach. Specifically, the zero-waste nitro-oxidization process was used to produce carboxylated CNF (NOCNF), which was subsequently converted into a cationic scaffold by crosslinking with aluminum ions. The system, termed Al-CNF, is found to be effective for the removal of fluoride ions from water. Using the Langmuir isotherm model, the fluoride adsorption study indicates that Al-CNF has a maximum adsorption capacity of 43.3 mg/g, which is significantly higher than that of alumina-based adsorbents such as activated alumina (16.3 mg/g). The selectivity of fluoride adsorption in the presence of other anionic species (nitrate or sulfate) by Al-CNF at different pH values was also evaluated. The results indicate that Al-CNF can maintain a relatively high selectivity towards the adsorption of fluoride. Finally, the sequential applicability of using spent Al-CNF after the fluoride adsorption to further remove cationic contaminant such as Basic Red 2 dye was demonstrated. The low cost and relatively high adsorption capacity of Al-CNF make it suitable for practical applications in fluoride removal from water.
more »
« less
Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue
Abstract Access to clean water has become increasingly difficult, motivating the need for materials that can efficiently remove pollutants. Hydrogels have been explored for remediation, but they often require long times to reach high levels of adsorption. To overcome this limitation, we developed a rapid, locally formed hydrogel that adsorbs dye during gelation. These hydrogels are derived from cellulose—a renewable, nontoxic, and biodegradable resource. More specifically, we found that sulfated cellulose nanofibers or sulfated wood pulps, when mixed with a water‐soluble, cationic cellulose derivative, efficiently remove methylene blue (a cationic dye) within seconds. The maximum adsorption capacity was found to be 340 ± 40 mg methylene blue/g cellulose. As such, these localized hydrogels (and structural analogues) may be useful for remediating other pollutants.
more »
« less
- Award ID(s):
- 1740597
- PAR ID:
- 10455053
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 58
- Issue:
- 21
- ISSN:
- 2642-4150
- Page Range / eLocation ID:
- p. 3042-3049
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cellulose nanomaterial (CNM) and polyethylenimine (PEI) composites have attracted growing attention due to their multifunctional characteristics, which have been applied in different fields. In this work, soybean hulls were valorized into carboxyl cellulose nanofibrils (COOH-CNFs), and composited into hydrogels with PEI by combining them with cationic chelating and physical adsorption strategies. Cellulose nanofibrils (CNFs) were produced from soybean hulls prior to oxidation by a TEMPO mediated reaction to obtain COOH–CNFs; then drops of zinc chloride were added to 1.5% aqueous COOH–CNF dispersions, which were left for 24 h to form COOH-CNF hydrogels. Finally, the hydrogels were functionalized using different concentration of PEI solutions over a range of pH values. Elemental analysis results showed that 20% aq. PEI at pH 11.6 is the optimum condition to synthesize the COOH–CNF/PEI hydrogels. Additionally, the adsorption efficiency for the removal of anionic methyl blue dyes and Cu(II) ions from water was tested, reaching 82.6% and 69.8%, respectively, after 24 h. These results demonstrate the great potential of COOH–CNF/PEI hydrogels as adsorbent materials for water remediation. Graphical abstractmore » « less
-
Gold nanorods are well-known surface-enhanced Raman scattering substrates. Under longitudinal plasmonic excitation, the ends of the nanorods experience larger local electric fields compared to the sides of the rods, suggesting that Raman-active molecules would be best detected if the molecules could preferentially bind to the ends of the nanorods. Coating the tips of gold nanorods with anionic mesoporous silica caps enabled surface-enhanced Raman scattering (SERS) detection of the cationic dye methylene blue at lower concentrations than observed for the corresponding silica coating of the entire rod. By analyzing the intensity ratio of two Raman active modes of methylene blue and the surface plasmon resonance peak shift of the gold nanorod composites, it can be inferred that at a low concentration of methylene blue, molecules adsorb to the tips of the tip coated silica gold nanorods. Functionalization of the anionic silica endcaps with cationic groups eliminates the SERS enhancement for the cationic methylene blue, demonstrating the electrostatic nature of the adsorption process in this case. These results show that anisotropic silica coatings can concentrate analytes at the tips of gold nanorods for improvements in chemical sensing and diagnostics.more » « less
-
The imaging and quantification of stained red blood cells (RBCs) are important for identifying RBCs in hematology and for diagnosing diseased RBCs or parasites in cytopathology. Romanowsky staining has been used traditionally to produce hues in blood cells using a mixture of anionic eosin Y and cationic methylene blue and azure B. While Romanowsky stains have been widely used in cytopathology, end-users have experienced problems with varying results in staining due to the premature precipitation or evaporation of methanol, leading to the inherent inconsistency of solution-based Romanowsky staining. Herein, we demonstrate that the staining and destaining of blood smears are controllable by the contact time of agarose gel stamps. While the extent of staining and destaining is discernable by the hue values of stamped red blood cells in micrographs, the quantification of adsorbed and desorbed Romanowsky dye molecules (in particular, eosin Y, methylene blue and azure B) from and to the agarose gel stamps needs a model that can explain the sorption process. We found predictable sorption of the Romanowsky dye molecules from the pseudo-second-order kinetic model for adsorption and the one phase decay model for desorption. Thus, the method of agarose gel stamping demonstrated here could be an alternative to solution-based Romanowsky staining with the predictable quantity of sorption and timing of contact.more » « less
-
null (Ed.)Droplet-based microfluidics is used to fabricate thin shell hydrogel microcapsules for the removal of methylene blue (MB) from aqueous solutions. The microcapsules composed of a poly(methacrylic acid) hydrogel shell exhibit unique properties, including permeation, separation, purification, and reaction of molecular species. Photocatalytic TiO 2 and ZnO nanoparticles encapsulated in the microcapsules, i.e. photocatalyst in capsule (PIC), are used to remove organic pollutants using an adsorption–oxidation mechanism. A prototype flow microreactor is assembled to demonstrate a controllable water purification approach in short time using photocatalysts. Our studies of aqueous and homogeneous hydrogel environments for the photocatalysts provide important insights into understanding the effectiveness of MB removal. Hydrogel capsules have MB removal rate comparable to homogeneous particles. Further reduction of both capsule and photocatalyst sizes can potentially aid in quicker water purification.more » « less
An official website of the United States government
