skip to main content

Title: A general framework for species‐abundance distributions: Linking traits and dispersal to explain commonness and rarity

Species‐abundance distributions (SADs) describe the spectrum of commonness and rarity in a community. Beyond the universal observation that most species are rare and only a few common, more‐precise description of SAD shape is controversial. Furthermore, the mechanisms behind SADs and how they vary along environmental gradients remain unresolved. We lack a general, non‐neutral theory of SADs. Here, we develop a trait‐based framework, focusing on a local community coupled to the region by dispersal. The balance of immigration and exclusion determines abundances, which vary over orders‐of‐magnitude. The local trait‐abundance distribution (TAD) reflects a transformation of the regional TAD. The left‐tail of the SAD depends on scaling exponents of the exclusion function and the regional species pool. More‐complex local dynamics can lead to multimodal TADs and SADs. Connecting SADs with trait‐based ecological theory provides a way to generate more‐testable hypotheses on the controls over commonness and rarity in communities.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Ecology Letters
Edition / Version:
Page Range / eLocation ID:
2359 to 2371
Subject(s) / Keyword(s):
["competition","mass effects","metacommunity","species-abundance distributions","trait-abundance distributions","trait-based model"]
Medium: X Size: 1MB Other: pdf
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    The interaction of land use with local versus regional processes driving biological homogenization (β‐diversity loss) is poorly understood. We explored: (a) stream β‐diversity responses to land cover (forest versus agriculture) in terms of physicochemistry and physicochemical heterogeneity; (b) whether these responses were constrained by the regional species pool, i.e. γ‐diversity, or local assembly processes through local (α) diversity; (c) whether local assembly operated through the regional species abundance distribution (SAD) or intraspecific spatial aggregation; and (d) the dependence on body size, dispersal capacity and trophic level (producer versus consumer).


    USA, Canada and France.

    Time period


    Major taxa studied

    Stream diatoms, insects and fish.


    We analysed six datasets totalling 1,225 stream samples. We compared diversity responses to eutrophication and physicochemical heterogeneity in forested versus agricultural streams with regression methods. Null models quantified the contribution of local assembly to β‐diversity (β‐deviance, βDEV) for both types of land covers and partitioned it into fractions explained by the regional SAD (βSAD) versus aggregation (βAGG).


    Eutrophication explained homogenization and more uneven regional SADs across groups, but local and regional biodiversity responses differed across taxa. The βDEVwas insensitive to land use. The βSADlargely exceeded βAGGand was higher in agriculture.

    Main conclusions

    Eutrophication but not physicochemical heterogeneity of agricultural streams underlay β‐diversity loss in diatoms, insects and fish. Agriculture did not constrain the magnitude of local versus regional effects on β‐diversity but controlled the local assembly mechanisms. Although the SAD fraction dominated in both land covers, it increased further in agriculture at the expense of aggregation. Notably, the regional SADs were more uneven in agriculture, exhibiting excess common species or stronger dominance. Diatoms and insects diverged from fish in terms of biodiversity, SAD shape and βDEVpatterns, suggesting an overriding role of body size and/or dispersal capacity compared with trophic position.

    more » « less
  2. Abstract

    Ecological rarity, characterized by low abundance or limited distribution, is typical of most species, yet our understanding of what factors contribute to the persistence of rare species remains limited. Consequently, little is also known about whether rare species might respond differently than common species to direct (e.g., abiotic) and indirect (e.g., biotic) effects of climate change. We investigated the effects of warming and exclusion of large herbivores on 14 tundra taxa, three of which were common and 11 of which were rare, at an inland, low-arctic study site near Kangerlussuaq, Greenland. Across all taxa, pooled commonness was reduced by experimental warming, and more strongly under herbivore exclusion than under herbivory. However, taxon-specific analyses revealed that although warming elicited variable effects on commonness, herbivore exclusion disproportionately reduced the commonness of rare taxa. Over the 15-year duration of the experiment, we also observed trends in commonness and rarity under all treatments through time. Sitewide commonness increased for two common taxa, the deciduous shrubsBetula nanaandSalix glauca, and declined in six other taxa, all of which were rare. Rates of increase or decline in commonness (i.e., temporal trends over the duration of the experiment) were strongly related to baseline commonness of taxa early in the experiment under all treatments except warming with grazing. Hence, commonness itself may be a strong predictor of species’ responses to climate change in the arctic tundra biome, but large herbivores may mediate such responses in rare taxa, perhaps facilitating their persistence.

    more » « less
  3. Abstract Aim

    Ecological niches shape species commonness and rarity, yet, the relative importance of different niche mechanisms within and across ecosystems remains unresolved. We tested the influence of niche breadth (range of environmental conditions where species occur) and niche position (marginality of a species’ environmental distribution relative to the mean environmental conditions of a region) on tree‐species abundance and occupancy across three biogeographic regions.


    Argentinian Andes; Bolivian Amazon; Missouri Ozarks.

    Time period


    Major taxa studied



    We calculated abiotic‐niche breadths and abiotic‐niche positions using 16 climate, soil and topographic variables. For each region, we used model selection to test the relative influence of niche breadth and niche position on local abundance and occupancy in regional‐scale networks of 0.1‐ha forest plots. To account for species–environment associations caused by other mechanisms (e.g., dispersal), we used null models that randomized associations between species occurrences and environmental variables.


    We found strong support for the niche‐position hypothesis. In all regions, species with higher local abundance and occupancy occurred in non‐marginal environments. Observed relationships between occupancy and niche position also differed from random species–environment associations in all regions. Surprisingly, we found little support for the niche‐breadth hypothesis. Observed relationships between both local abundance and niche breadth, and occupancy and niche breadth, did not differ from random species–environment associations.

    Main conclusion

    Niche position was more important than niche breadth in shaping species commonness and rarity across temperate, sub‐tropical and tropical forests. In all forests, tree species with widespread geographic distributions were associated with environmental conditions commonly found throughout the region, suggesting that niche position has similar effects on species occupancy across contrasting biogeographic regions. Our findings imply that conservation efforts aimed at protecting populations of common and rare tree species should prioritize conservation of both common and rare habitats.

    more » « less
  4. Abstract

    Spatial rarity is often used to predict extinction risk, but rarity can also occur temporally. Perhaps more relevant in the context of global change is whether a species is core to a community (persistent) or transient (intermittently present), with transient species often susceptible to human activities that reduce niche space. Using 5–12 yr of data on 1,447 plant species from 49 grasslands on five continents, we show that local abundance and species persistence under ambient conditions are both effective predictors of local extinction risk following experimental exclusion of grazers or addition of nutrients; persistence was a more powerful predictor than local abundance. While perturbations increased the risk of exclusion for low persistence and abundance species, transient but abundant species were also highly likely to be excluded from a perturbed plot relative to ambient conditions. Moreover, low persistence and low abundance species that were not excluded from perturbed plots tended to have a modest increase in abundance following perturbance. Last, even core species with high abundances had large decreases in persistence and increased losses in perturbed plots, threatening the long‐term stability of these grasslands. Our results demonstrate that expanding the concept of rarity to include temporal dynamics, in addition to local abundance, more effectively predicts extinction risk in response to environmental change than either rarity axis predicts alone.

    more » « less
  5. Explaining the maintenance of tropical forest diversity under the countervailing forces of drift and competition poses a major challenge to ecological theory. Janzen−Connell effects, in which host-specific natural enemies restrict the recruitment of juveniles near conspecific adults, provide a potential mechanism. Janzen−Connell is strongly supported empirically, but existing theory does not address the stable coexistence of hundreds of species. Here we use high-performance computing and analytical models to demonstrate that tropical forest diversity can be maintained nearly indefinitely in a prolonged state of transient dynamics due to distance-responsive natural enemies. Further, we show that Janzen−Connell effects lead to community regulation of diversity by imposing a diversity-dependent cost to commonness and benefit to rarity. The resulting species−area and rank−abundance relationships are consistent with empirical results. Diversity maintenance over long time spans does not require dispersal from an external metacommunity, speciation, or resource niche partitioning, only a small zone around conspecific adults in which saplings fail to recruit. We conclude that the Janzen−Connell mechanism can explain the maintenance of tropical tree diversity while not precluding the operation of other niche-based mechanisms such as resource partitioning.

    more » « less