Abstract AimEcological niches shape species commonness and rarity, yet, the relative importance of different niche mechanisms within and across ecosystems remains unresolved. We tested the influence of niche breadth (range of environmental conditions where species occur) and niche position (marginality of a species’ environmental distribution relative to the mean environmental conditions of a region) on tree‐species abundance and occupancy across three biogeographic regions. LocationArgentinian Andes; Bolivian Amazon; Missouri Ozarks. Time period2002–2010. Major taxa studiedTrees. MethodsWe calculated abiotic‐niche breadths and abiotic‐niche positions using 16 climate, soil and topographic variables. For each region, we used model selection to test the relative influence of niche breadth and niche position on local abundance and occupancy in regional‐scale networks of 0.1‐ha forest plots. To account for species–environment associations caused by other mechanisms (e.g., dispersal), we used null models that randomized associations between species occurrences and environmental variables. ResultsWe found strong support for the niche‐position hypothesis. In all regions, species with higher local abundance and occupancy occurred in non‐marginal environments. Observed relationships between occupancy and niche position also differed from random species–environment associations in all regions. Surprisingly, we found little support for the niche‐breadth hypothesis. Observed relationships between both local abundance and niche breadth, and occupancy and niche breadth, did not differ from random species–environment associations. Main conclusionNiche position was more important than niche breadth in shaping species commonness and rarity across temperate, sub‐tropical and tropical forests. In all forests, tree species with widespread geographic distributions were associated with environmental conditions commonly found throughout the region, suggesting that niche position has similar effects on species occupancy across contrasting biogeographic regions. Our findings imply that conservation efforts aimed at protecting populations of common and rare tree species should prioritize conservation of both common and rare habitats. 
                        more » 
                        « less   
                    This content will become publicly available on April 1, 2026
                            
                            A Quantitative Classification of the Geography of Non‐Native Flora in the United States
                        
                    
    
            ABSTRACT AimNon‐native plants have the potential to harm ecosystems. Harm is classically related to their distribution and abundance, but this geographical information is often unknown. Here, we assess geographical commonness as a potential indicator of invasive status for non‐native flora in the United States. Geographical commonness could inform invasion risk assessments across species and ecoregions. LocationConterminous United States. Time PeriodThrough 2022. Major Taxa StudiedPlants. MethodsWe compiled and standardised occurrence and abundance data from 14 spatial datasets and used this information to categorise non‐native species as uncommon or common based on three dimensions of commonness: area of occupancy, habitat breadth and local abundance. To assess consistency in existing categorizations, we compared commonness to invasive status in the United States. We identified species with higher‐than‐expected abundance relative to their occupancy, habitat breadth or residence time. We calculated non‐native plant richness within United States ecoregions and estimated unreported species based on rarefaction/extrapolation curves. ResultsThis comprehensive database identified 1874 non‐native plant species recorded in 4,844,963 locations. Of these, 1221 species were locally abundant (> 10% cover) in 797,759 unique locations. One thousand one hundred one non‐native species (59%) achieved at least one dimension of commonness, including 565 species that achieved all three. Species with longer residence times tended to meet more dimensions of commonness. We identified 132 species with higher‐than‐expected abundance. Ecoregions in the central United States have the largest estimated numbers of unreported, abundant non‐native plants. Main ConclusionsA high proportion of non‐native species have become common in the United States. However, existing categorizations of invasive species are not always consistent with species' abundance and distribution, even after considering residence time. Considering geographical commonness and higher‐than‐expected abundance revealed in this new dataset could support more consistent and proactive identification of invasive plants and lead to more efficient management practices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2217817
- PAR ID:
- 10621063
- Publisher / Repository:
- wiley
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 34
- Issue:
- 4
- ISSN:
- 1466-822X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract AimThe assembly of species into communities and ecoregions is the result of interacting factors that affect plant and animal distribution and abundance at biogeographic scales. Here, we empirically derive ecoregions for mammals to test whether human disturbance has become more important than climate and habitat resources in structuring communities. LocationConterminous United States. Time Period2010–2021. Major Taxa StudiedTwenty‐five species of mammals. MethodsWe analysed data from 25 mammal species recorded by camera traps at 6645 locations across the conterminous United States in a joint modelling framework to estimate relative abundance of each species. We then used a clustering analysis to describe 8 broad and 16 narrow mammal communities. ResultsClimate was the most important predictor of mammal abundance overall, while human population density and agriculture were less important, with mixed effects across species. Seed production by forests also predicted mammal abundance, especially hard‐mast tree species. The mammal community maps are similar to those of plants, with an east–west split driven by different dominant species of deer and squirrels. Communities vary along gradients of temperature in the east and precipitation in the west. Most fine‐scale mammal community boundaries aligned with established plant ecoregions and were distinguished by the presence of regional specialists or shifts in relative abundance of widespread species. Maps of potential ecosystem services provided by these communities suggest high herbivory in the Rocky Mountains and eastern forests, high invertebrate predation in the subtropical south and greater predation pressure on large vertebrates in the west. Main ConclusionsOur results highlight the importance of climate to modern mammals and suggest that climate change will have strong impacts on these communities. Our new empirical approach to recognizing ecoregions has potential to be applied to expanded communities of mammals or other taxa.more » « less
- 
            Abstract AimAlternative hypotheses of Darwin's Naturalization Conundrum (DNC) predict that the non‐native species that successfully establish within a community are those either more closely or more distantly related to the resident native species. Despite the increasing number of studies using phylogenetic data to testDNCand evaluate community assembly, it remains unknown whether phylogenetic relationships alone can be used to predict invasion susceptibility across communities differing environmentally and in disturbance history. In this study, we evaluate whether phylogenetic structure of diverse native communities predicts the occurrence of non‐native species and offers insight into community assembly. LocationEastern United States of America. MethodsWe examine multiple communities across a north–south transect of the eastern United States to test whether non‐native species richness and abundance are associated with phylogenetic diversity measures of the native community. We also test whether non‐native species are consistently closely or distantly related to native species using two approaches differing in phylogenetic scale and whether this differs with ecologically successful species. ResultsOur analyses did not unambiguously resolveDNC. Non‐native species richness and abundance decreased with increasing native species phylogenetic diversity. Within some communities, non‐native species were significantly more closely related to native species than expected by chance, and tended to be more often closely related to a native species than that native species was to other native relatives. When considering species abundance, only one community showed that ecologically successful non‐native species were closely related to resident species. Main conclusionsPhylogenetic relationships can reveal important details about community assembly in diverse ecological settings. However, given the multifaceted nature of community assembly, phylogenetic metrics alone have limited utility as a general predictive tool for community invasion. Our study highlights a need to incorporate additional types of data to better understand why some communities are more susceptible to non‐native species establishment.more » « less
- 
            Summary Are non‐native plants abundant because they are non‐native, and have advantages over native plants, or because they possess ‘fast’ resource strategies, and have advantages in disturbed environments? This question is central to invasion biology but remains unanswered.We quantified the relative importance of resource strategy and biogeographic origin in 69 441 plots across the conterminous United States containing 11 280 plant species.Non‐native species had faster economic traits than native species in most plant communities (77%, 86% and 82% of plots for leaf nitrogen concentration, specific leaf area, and leaf dry matter content). Non‐native species also had distinct patterns of abundance, but these were not explained by their fast traits. Compared with functionally similar native species, non‐native species were (1) more abundant in plains and deserts, indicating the importance of biogeographic origin, and less abundant in forested ecoregions, (2) were more abundant where co‐occurring species had fast traits, for example due to disturbance, and (3) showed weaker signals of local environmental filtering.These results clarify the nature of plant invasion: Although non‐native plants have consistently fast economic traits, other novel characteristics and processes likely explain their abundance and, therefore, impacts.more » « less
- 
            Abstract Invasive forest pests can affect the composition and physical structure of forest canopies that may facilitate invasion by non‐native plants. However, it remains unclear whether this process is generalizable across invasive plant species at broad spatial scales, and how other landscape characteristics may simultaneously facilitate non‐native plant invasion. Here, we assembled a dataset of over 3000 repeatedly measured forest plots and quantified the impact of emerald ash borer (EAB,Agrilus planipennis) residence time, land cover, and forest structure on the accumulation and coverage of invasive plants. We show plots in counties with longer EAB residences tended to accumulate more invasive plants than plots with shorter EAB residences. On average, nearly half of the plots with ash (Fraxinusspp.) in counties with EAB accumulated an additional 0.48 invasive plant species over the 5‐ to 6‐year resample interval compared to plots with ash in counties without EAB at the time of sampling. Increases in invasive species coverage were also evident in counties with EAB—although residence time did not have a strong effect, while forest gap fraction and vertical complexity were each negatively associated with increased coverage. This work has implications for understanding how invasive forest pests can facilitate the spread of non‐native plants.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
