skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Something old, something new: Teaching the BMB lab
Abstract Lab courses are a significant component of biochemistry and molecular biology (BMB) education. In teaching the labs, we combine established techniques with novel approaches. Lab formats have also moved from traditional cookbook style labs to guided inquiry to course‐based undergraduate research experiences (CUREs), where faculty bring their own research interests into the course setting with a larger number of students in a much more restricted time frame. This presentation is designed to explore some of these ideas and challenge the reader to introduce research opportunities to all students, not just the smaller group of students in their research labs.  more » « less
Award ID(s):
1709170
PAR ID:
10455104
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biochemistry and Molecular Biology Education
Volume:
48
Issue:
6
ISSN:
1470-8175
Page Range / eLocation ID:
p. 640-642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Microbiology and Cell Science program at the University of Florida compressed two standard 16-week lab courses into five-day versions of the course, which are referred to as bootcamp labs. The bootcamp labs have the same objectives, activities, and assessments as their traditional counterparts. Development of the bootcamp labs was part of a larger effort to increase access to the major, and more broadly STEM, by offering a 2+2 hybrid online transfer program. The results of this mixed-methods study include a direct comparison between bootcamp and traditional lab format as an approach for delivery of a face-to-face lab course. The bootcamp lab cohort has a greater diversity of students, with more women and underrepresented minorities in STEM than the traditional semester-long cohorts. Students in the bootcamp labs have comparable grade outcomes and learning gains to students in traditional lab format. Regression analysis identified GPA, but not lab format, as the most significant predictor of success for students enrolled in lab courses. Qualitative results suggest that the bootcamp format may be a better way than traditional formats to teach microbiology lab. In summary, the results demonstrate that a bootcamp version of a face-to-face microbiology course is just as effective as the traditional semester-long version. This work has broader implications as it supports the bootcamp lab approach as a model in STEM education for increasing access and for overcoming a major barrier to online STEM programs: face-to-face delivery of key lab courses. 
    more » « less
  2. Undergraduate instructional biology laboratories are typically taught within two paradigms. Some labs focus on protocols and techniques delivered in “cookbook” format with defined experimental outcomes. There is increasing momentum to alternatively employ student-driven, open-ended, and discovery-based strategies, oftenviacourse-based undergraduate research experiences (CUREs) using crowd-sourcing initiatives. A fraction of students also participate in funded research in faculty research labs, where they have opportunities to work on projects designed to expand the frontiers of human knowledge. These experiences are widely recognized as valuable but are not scalable, as most institutions have many more undergraduates than research lab positions. We sought to address this gap through our department’s curriculum by creating an opportunity for students to participate in the real-world research process within a laboratory course. We conceived, developed, and delivered an authentic, guided research experience to students in an upper-level molecular biology laboratory course. We refer to this model as a “research program-linked CURE.” The research questions come directly from a faculty member’s research lab and evolve along with that research program. Students study post-transcriptional regulation in mycobacteria. We use current molecular biology methodologies to test hypotheses like “UTRs affect RNA and protein expression levels,” “there is functional redundancy among RNA helicases,” and “carbon starvation alters mRNA 5′ end chemistries.” We conducted standard assessments and developed a customized “Skills and Concepts Inventory” survey to gauge how well the course met our student learning outcomes. We report the results of our assessments and describe challenges addressed during development and execution of the course, including organizing activities to fit within an instructional lab, balancing breadth with depth, and maintaining authenticity while giving students the experience of obtaining interpretable and novel results. Our data suggest student learning was enhanced through this truly authentic research approach. Further, students were able to perceive they were participants and contributors within an active research paradigm. Students reported increases in their self-identification as scientists, and a positive impact on their career trajectories. An additional benefit was reciprocation back to the funded research laboratory, by funneling course alumni, results, materials, and protocols. 
    more » « less
  3. In engineering education, laboratory learning that is well aligned with core content knowledge is instrumental as it plays a significant role in students’ knowledge construction, application, and distribution. Learning in laboratories is interactive in nature, and therefore students who learn engineering through online platforms can face many challenges with labs, which were frequently documented during the recent pandemic. To address those reported challenges, innovative online lab learning modules were developed and learning strategies were implemented in five courses in electrical engineering, Circuits I, Electronics I, Electronics II, Signals and Systems, and Microcomputers I, through which students gain solid foundation before students take on senior design projects. Lab modules with open-ended design learning experience through using a lab-in-a-box approach were developed to allow students to solve lab problems with multiple approaches that allow problem solving independently and collaboratively. Because this innovative lab design allows problem solving at various cognitive levels, it is better suited for concept exploration and collaborative lab learning environments as opposed to the traditional lab works with a “cookbook” approach that tend to lead students to follow certain procedures for expected solutions with the absence of problem exploration stage. In addition to the open-ended lab modules, course instructors formed online lab groups through which students shared the entire problem-solving process from ideas formation to solutions through trial and error. To investigate the effectiveness of the open-ended online lab learning experiences, students in all courses were randomly divided into experimental and control groups. Students in the control group learned in labs through learning materials that are aligned with core concepts by following a completed given procedures students in the experimental group learned through inquiry-based labs learning materials that required them to work in teams by integrating core concepts together to find solutions with multiple approaches. To maximize the online lab learning effect and to replicate the way industry, commerce and research practice, instructor structured cooperative learning strategies were applied along with pre-lab simulations and videos. The research results showed that generally students in the experimental group outperformed their counterparts in labs especially with more advanced concept understanding and applications, but showed mixed results for the overall class performance based on their course learning outcomes such as quizzes, lab reports, and tests. Further, survey results showed that 72% of students reported open-ended lab learning helped them learn better. According to interviews, the initial stage of working with team members was somewhat challenging from difficulties in finding time to work together for discussion and problem solving. Yet, through many communication tools, such as course LMS and mobile apps they were able to collaborate in lab problems, which also led them to build learning communities that went beyond the courses. 
    more » « less
  4. Bennett, M; Wolf, S.; Frank, B. W. (Ed.)
    Computer simulations for physics labs may be combined with hands-on lab equipment to boost student understanding and make labs more accessible. Hybrid labs of HTML5-based computer simulations and hands-on lab equipment for topics in mechanics were investigated in a large, algebra-based, studio physics course for life science students at a private, research-intensive institution. Computer simulations were combined with hands-on equipment and compared to traditional hands-on labs using an A/B testing protocol. Learning outcomes were measured for the specific topic of momentum conservation by comparing student scores on post-lab exercises, related quiz and exam questions, and a subset of questions on the Energy and Momentum Conceptual Survey (EMCS) administered before and after instruction for both groups. We find that students who completed a hands-on lab vs. a hybrid lab showed no difference in performance on momentum assessments. 
    more » « less
  5. This paper explores the effect of a paired lab course on students’ course outcomes in nonmajors introductory biology at the University of Alaska Anchorage. We compare course completion and final grades for 10,793 students (3736 who simultaneously enrolled in the lab and 7057 who did not). Unconditionally, students who self-select into the lab are more likely to complete the course and to earn a higher grade than students who do not. However, when we condition on observable course, academic, and demographic characteristics, we find much of this difference in student performance outcomes is attributable to selection bias, rather than an effect of the lab itself. The data and discussion challenge the misconception that labs serve as recitations for lecture content, noting that the learning objectives of science labs should be more clearly articulated and assessed independent of lecture course outcomes. 
    more » « less