skip to main content

Title: Age‐Ranked Storage‐Discharge Relations: A Unified Description of Spatially Lumped Flow and Water Age in Hydrologic Systems
Abstract

A storage‐discharge relation tells us how discharge will change when new water enters a hydrologic system but not which water is released. Does an incremental increase in discharge come from faster turnover of older water already in storage? Or are the recent inputs rapidly delivered to the outlet, “short‐circuiting” the bulk of the system? Here I demonstrate that the concepts of storage‐discharge relationships and transit time distributions can be unified into a single relationship that can usefully address these questions: the age‐ranked storage‐discharge relation. This relationship captures how changes in total discharge arise from changes in the turnover rate of younger and older water in storage and provides a window into both the celerity and velocity of water in a catchment. This leads naturally to a distinction between cases where an increase in total discharge is accompanied by an increase (old water acceleration), no change (old water steadiness), or a decrease in the rate of discharge of older water in storage (old water suppression). The simple theoretical case of a power law age‐ranked storage‐discharge relations is explored to illustrate these cases. Example applications to data suggest that the apparent presence of old water acceleration or suppression is sensitive to more » the functional form chosen to fit to the data, making it difficult to draw decisive conclusions. This suggests new methods are needed that do not require a functional form to be chosen and provide age‐dependent uncertainty bounds.

« less
Authors:
 
Award ID(s):
1654194
Publication Date:
NSF-PAR ID:
10455112
Journal Name:
Water Resources Research
Volume:
55
Issue:
8
Page Range or eLocation-ID:
p. 7143-7165
ISSN:
0043-1397
Publisher:
DOI PREFIX: 10.1029
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    The COVID-19 pandemic has dramatically altered family life in the United States. Over the long duration of the pandemic, parents had to adapt to shifting work conditions, virtual schooling, the closure of daycare facilities, and the stress of not only managing households without domestic and care supports but also worrying that family members may contract the novel coronavirus. Reports early in the pandemic suggest that these burdens have fallen disproportionately on mothers, creating concerns about the long-term implications of the pandemic for gender inequality and mothers’ well-being. Nevertheless, less is known about how parents’ engagement in domestic labor and paid work has changed throughout the pandemic, what factors may be driving these changes, and what the long-term consequences of the pandemic may be for the gendered division of labor and gender inequality more generally. <br /><br />The Study on U.S. Parents’ Divisions of Labor During COVID-19 (SPDLC) collects longitudinal survey data from partnered U.S. parents that can be used to assess changes in parents’ divisions of domestic labor, divisions of paid labor, and well-being throughout and after the COVID-19 pandemic. The goal of SPDLC is to understand both the short- and long-term impacts of the pandemic for the genderedMore>>
  2. Purpose The larynx plays a role in swallowing, respiration, and voice production. All three functions change during ontogeny. We investigated ontogenetic shape changes using a mouse model to inform our understanding of how laryngeal form and function are integrated. We understand the characterization of developmental changes to larynx anatomy as a critical step toward using rodent models to study human vocal communication disorders. Method Contrast-enhanced micro-computed tomography image stacks were used to generate three-dimensional reconstructions of the CD-1 mouse ( Mus musculus ) laryngeal cartilaginous framework. Then, we quantified size and shape in four age groups: pups, weanlings, young, and old adults using a combination of landmark and linear morphometrics. We analyzed postnatal patterns of growth and shape in the laryngeal skeleton, as well as morphological integration among four laryngeal cartilages using geometric morphometric methods. Acoustic analysis of vocal patterns was employed to investigate morphological and functional integration. Results Four cartilages scaled with negative allometry on body mass. Additionally, thyroid, arytenoid, and epiglottic cartilages, but not the cricoid cartilage, showed shape change associated with developmental age. A test for modularity between the four cartilages suggests greater independence of thyroid cartilage shape, hinting at the importance of embryological origin during postnatalmore »development. Finally, mean fundamental frequency, but not fundamental frequency range, varied predictably with size. Conclusion In a mouse model, the four main laryngeal cartilages do not develop uniformly throughout the first 12 months of life. High-dimensional shape analysis effectively quantified variation in shape across development and in relation to size, as well as clarifying patterns of covariation in shape among cartilages and possibly the ventral pouch. Supplemental Material https://doi.org/10.23641/asha.12735917« less
  3. Abstract. Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH2O-iso, for cold regions with the explicit conceptualization of dynamic soil freeze–thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criterion calibration using discharge, stream isotopes and soil moisture in three nested catchments. We utilized the model's incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically depleted pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing front throughout the winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum freeze depth of 0.25&thinsp;m below forest vegetation. Water ages of evaporation and transpiration reflect themore »influence of snowmelt inputs, with a high proclivity of old water (pre-winter storage) at the beginning of the growing season and a mix of snowmelt and precipitation (young water) toward the end of the summer. Soil frost had an early season influence of the transpiration water ages, with water pre-dating the snowpack mainly sustaining vegetation at the start of the growing season. Given the long-term expected change in the energy balance of northern climates, the approach presented provides a framework for quantifying the interactions of ecohydrological fluxes and waters stored in the soil and understanding how these may be impacted in future.

    « less
  4. During International Ocean Discovery Program Expedition 397, we recovered a total of 6176.7 m of core (104.2% recovery) at four sites (U1586, U1587, U1385, and U1588) from the Promontório dos Principes de Avis (PPA) (Figure F1), a plateau located on the Portuguese continental slope that is elevated above the Tagus Abyssal Plain and isolated from the influence of turbidites. The drill sites are arranged along a bathymetric transect (4691, 3479, 2590, and 1339 meters below sea level [mbsl], respectively) to intersect each of the major subsurface water masses of the eastern North Atlantic (Figures F2, F7). Multiple holes were drilled at each site to ensure complete spliced composite sections (Figure F3; Table T1), which will be further refined postcruise by a campaign of X-ray fluorescence core scanning. At Site U1586 (4691 mbsl), the deepest and farthest from shore, a 350 m sequence was recovered in four holes that extend as far back as the middle Miocene (14 Ma), which is nearly twice as old as initially predicted from seismic stratigraphy. Sedimentation rates are lower (averaging 5 cm/ky in the Quaternary) at Site U1586 than other Expedition 397 sites (Figure F4), and a few slumped intervals were encountered in the stratigraphicmore »sequence. Despite these limitations, Site U1586 anchors the deep end-member of the bathymetric transect and provides an important reference section to study deepwater circulation, ventilation and carbon storage in the deep eastern North Atlantic. At Site U1587 (3479 mbsl), the second deepest site along the depth transect, we recovered a 567 m sequence of late Miocene to Holocene sediments that accumulated at rates between 6.5 and 11 cm/ky (Figure F4). The high sedimentation rates and long continuous record at this site will permit climate reconstruction at high temporal resolution (e.g., millennial) for the past 7.8 My. A complete Messinian Stage (7.246–5.333 Ma) was recovered, which provides a valuable opportunity to study the Messinian Salinity Crisis in an open marine setting adjacent to the Mediterranean. Site U1385 (Shackleton site) was a reoccupation of a position previously drilled during Integrated Ocean Drilling Program Expedition 339. Expedition 339 Site U1385 has yielded a remarkable record of millennial-scale climate change for the past 1.45 My (Marine Isotope Stage [MIS] 47) (Figure F6). During Expedition 397, we deepened the site from 156 to 400 meters below seafloor (mbsf), extending the basal age into the early Pliocene (4.5 Ma). Sedimentation rates remained high, averaging between 11 and 9 cm/ky throughout the sequence (Figure F4). The newly recovered cores at Expedition 397 Site U1385 will permit the study of millennial climate variability through the entire Quaternary and into the Pliocene, prior to the intensification of Northern Hemisphere glaciation. Site U1588 is the shallowest, closest to shore, and youngest site drilled during Expedition 397 and is also the one with the highest sedimentation rate (20 cm/ky). The base of the 412.5 m sequence is 2.2 Ma, providing an expanded Pleistocene sequence of sediment deposited under the influence of the lower core of the Mediterranean Outflow Water (MOW). Together with other Expedition 339 sites, Site U1588 will be important for determining how the depth and intensity of the MOW has varied on orbital and millennial timescales. In addition, it also provides a marine reference section for studying Quaternary climate variability at very high temporal resolution (millennial to submillennial). A highlight of the expedition is that sediment at all sites shows very strong cyclicity in bulk sediment properties (color, magnetic susceptibility, and natural gamma radiation). Particularly notable are the precession cycles of the Pliocene that can be correlated peak-for-peak among sites (Figure F10). These cyclic variations will be used to derive an orbitally tuned timescale for Expedition 397 sites and correlate them into classic Mediterranean cyclostratigraphy. The cores recovered during Expedition 397 will form the basis of collaborative postcruise research to produce benchmark paleoclimate records for the late Miocene through Quaternary using the widest range of proxy measurements. It will take many years to complete these analyses, but the records will lead to major advances in our understanding of millennial and orbital climate changes and their underlying causes and evolving contextuality. Outreach during Expedition 397 was highly productive, reaching a record number of students and the general public across the world through several diverse platforms, including live ship-to-shore events, webinars, social media, videos, radio pieces, blog posts, and in-person activities.« less
  5. Abstract

    Signalers may benefit in some contexts from advertising their ages, for example in courting potential mates. Receivers in turn may benefit from assessing a signaler’s age, even in cases where their doing so is against the signaler’s interests. Indicators of age contained in signals thus may have important fitness consequences for both signalers and receivers. In birds, males of many species have been shown to display delayed maturation of their songs, resulting in older males singing songs that are higher in quality in one or more characteristics. Conversely, it seems possible that songs might eventually deteriorate with age as an aspect behavioral senescence. Studies of birdsong long enough to test both possibilities are quite uncommon, with nearly all studies aspect of age-dependent changes in birdsong spanning 3 or fewer years of males’ lives. Here, we present the longest longitudinal analysis of male birdsong to date, in which we analyze songs recorded for 4–11 years of the lives of captive male swamp sparrows. We find that males displayed delayed maturation of three song characteristics: song rate, song length, and consistency between songs. Delayed maturation was followed by behavioral senescence of three characteristics: song rate, stereotypy within songs, and consistency betweenmore »songs. Because song quality declined in males beyond 2 years of age, this evidence is inconsistent with a signaling system in which females both prefer increasingly older males and are able to accurately determine male age through song assessment. Rather, our evidence suggests that swamp sparrows should be able to use song to distinguish intermediate-aged males from 1-year-old and very old males.

    « less