skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Age‐Ranked Storage‐Discharge Relations: A Unified Description of Spatially Lumped Flow and Water Age in Hydrologic Systems
Abstract A storage‐discharge relation tells us how discharge will change when new water enters a hydrologic system but not which water is released. Does an incremental increase in discharge come from faster turnover of older water already in storage? Or are the recent inputs rapidly delivered to the outlet, “short‐circuiting” the bulk of the system? Here I demonstrate that the concepts of storage‐discharge relationships and transit time distributions can be unified into a single relationship that can usefully address these questions: the age‐ranked storage‐discharge relation. This relationship captures how changes in total discharge arise from changes in the turnover rate of younger and older water in storage and provides a window into both the celerity and velocity of water in a catchment. This leads naturally to a distinction between cases where an increase in total discharge is accompanied by an increase (old water acceleration), no change (old water steadiness), or a decrease in the rate of discharge of older water in storage (old water suppression). The simple theoretical case of a power law age‐ranked storage‐discharge relations is explored to illustrate these cases. Example applications to data suggest that the apparent presence of old water acceleration or suppression is sensitive to the functional form chosen to fit to the data, making it difficult to draw decisive conclusions. This suggests new methods are needed that do not require a functional form to be chosen and provide age‐dependent uncertainty bounds.  more » « less
Award ID(s):
1654194
PAR ID:
10455112
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
8
ISSN:
0043-1397
Page Range / eLocation ID:
p. 7143-7165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hyporheic exchange is a key driver of ecosystem processes in streams, yet stream ecologists often fail to leverage detailed conceptual models developed by engineers and hydrologists describing the relationship between water storage, water balance, and water age (time elapsed since a conceptual parcel of water entered the hyporheic zone) in hyporheic zones.  In a companion paper (G.C. Poole et al. Hyporheic Hydraulic Geometry: Conceptualizing relationships among hyporheic exchange, storage, and water age, published in PLoS ONE; doi:10.1371/journal.pone.0262080), we provide visualizations of these relationships in an effort to allow non-hydrologists to grasp four primary concepts along with associated research and management implications: 1) the rate of hyporheic exchange, size of the hyporheic zone, and hyporheic water age are inexorably linked; 2) such linkages can be leveraged to build understanding of hyporheic processes; 3) the age distribution of hyporheic water and hyporheic discharge is heavily skewed toward young water ages -- at any temporal scale of observation (minutes, hours, days, or months) older hyporheic water is rare relative to younger water; 4) the age distribution of water discharged from any hyporheic zone is not the same as the age distribution of water stored within that hyporheic zone. The data set presented here represents the numerical values represented by the figures published in the companion paper. 
    more » « less
  2. null (Ed.)
    Euryhaline teleost fish are characterized by their ability to tolerate a wide range of environmental salinities by modifying the function of osmoregulatory cells and tissues. In this study, we experimentally addressed the age-related decline in the sensitivity of osmoregulatory transcripts associated with a transfer from fresh water (FW) to seawater (SW) in the euryhaline teleost, Mozambique tilapia, Oreochromis mossambicus . The survival rates of tilapia transferred from FW to SW were inversely related with age, indicating that older fish require a longer acclimation period during a salinity challenge. The relative expression of Na + /K + /2Cl − cotransporter 1a ( nkcc1a ), which plays an important role in hyposmoregulation, was significantly upregulated in younger fish after SW transfer, indicating a clear effect of age in the sensitivity of branchial ionocytes. Prolactin (Prl), a hyperosmoregulatory hormone in O. mossambicus , is released in direct response to a fall in extracellular osmolality. Prl cells of 4-month-old tilapia were sensitive to hyposmotic stimuli, while those of >24-month-old fish did not respond. Moreover, the responsiveness of branchial ionocytes to Prl was more robust in younger fish. Taken together, multiple aspects of osmotic homeostasis, from osmoreception to hormonal and environmental control of osmoregulation, declined in older fish. This decline appears to undermine the ability of older fish to survive transfer to hyperosmotic environments. 
    more » « less
  3. Abstract Accurately quantifying and predicting the reactive transport of nitrate () in hydrologic systems continues to be a challenge, due to the complex hydrological and biogeochemical interactions that underlie this transport. Recent advances related to time‐variant water age have led to a new method that probes water mixing and selection behaviors using StorAge Selection (SAS) functions. In this study, SAS functions were applied to investigate storage, water selection behaviors, and export regimes in a tile‐drained corn‐soybean field. The natural abundance stable nitrogen and oxygen isotopes of tile drainage were also measured to provide constraints on biogeochemical transformations. The SAS functions, calibrated using chloride measurements at tile drain outlets, revealed a strong young water preference during tile discharge generation. The use of a time‐variant SAS function for tile discharge generated unique water age dynamics that reveal an inverse storage effect driven by the activation of preferential flow paths and mechanically explain the observed variations in isotopes. Combining the water age estimates with isotope fingerprinting shed new light on export dynamics at the tile‐drain scale, where a large mixing volume and the lack of a strong vertical contrast in concentration resulted in chemostatic export regimes. For the first time, isotopes were embedded into a water age‐based transport model to model reactive transport under transient conditions. The results of this modeling study provided a proof‐of‐concept for the potential of coupling water age modeling with isotope analysis to elucidate the mechanisms driving reactive transport. 
    more » « less
  4. null (Ed.)
    Many government programs transfer resources to older people and implicitly or explicitly tax their labor. We shed new light on the labor supply and welfare effects of such programs by investigating the Old Age Assistance Program (OAA). Exploiting the large differences in OAA programs across states and Census data on the entire US population in 1940, we find that OAA reduced the labor force participation rate among men aged 65–74 by 8.5 percentage points, more than one-half of its 1930–1940 decline, but that OAA’s implicit taxation of earnings imposed only small welfare costs on recipients. (JEL H24, H55, H75, J14, J22) 
    more » « less
  5. ABSTRACT We explore the radial variation of star formation histories (SFHs) in dwarf galaxies simulated with Feedback In Realistic Environments (FIRE) physics. The sample contains 26 field dwarf galaxies with Mstar = 105–109 M⊙. We find age gradients are common in our dwarfs, with older stars dominant at large radii. The strength of the gradient correlates with overall galaxy age such that earlier star formation produces a more pronounced gradient. The relation between formation time and strength of the gradient is driven by both mergers and star formation feedback. Mergers can both steepen and flatten the age gradient depending on the timing of the merger and SFHs of the merging galaxy. In galaxies without significant mergers, feedback pushes stars to the outskirts. The strength of the age gradient is determined by the subsequent evolution of the galaxy. Galaxies with weak age gradients constantly grow to z  = 0, meaning that young star formation occurs at a similar radius to which older stars are heated to. In contrast, galaxies with strong age gradients tend to maintain a constant half-mass radius over time. If real galaxies have age gradients as we predict, stellar population studies that rely on sampling a limited fraction of a galaxy can give a biased view of its global SFH. Central fields can be biased young by Gyrs while outer fields are biased old. Fields positioned near the 2D half-light radius will provide the least biased measure of a dwarf galaxy’s global SFH. 
    more » « less