Monitoring humidity and temperature is critical for many applications, including enhancing food production in greenhouses and open farms. This demands for environmentally friendly, cost-effective, and biocompatible sensors. Paper-based sensors meet these requirements as they are cost-effective, eco-friendly, and adaptable to varying agricultural conditions due to their affordability, biodegradability, and flexibility. This research developed printed capacitance-based humidity and resistance-based temperature sensors using a dry additive nanomanufacturing technique on four distinct types of commercially available uncoated paper substrates. Based on the principles of a capacitor and resistor, humidity and temperature sensors were fabricated by printing silver interdigitated electrodes on papers with varying solubility and thicknesses to measure the humidity absorption capability and the printed silver electrode’s response to temperature change. The sensors successfully detected the changes in relative humidity levels from 20 to 90% and temperature variations from 25 to 50 °C. The humidity and temperature sensors developed in this study have strong implications for use in smart agricultural applications, food supply, food storage, and preservation. Since these sensors are affordable, biodegradable, and environmentally friendly, they can be intended for one- or two-time applications and safely disposed of after use. 
                        more » 
                        « less   
                    
                            
                            Recent advances in starch‐based films toward food packaging applications: Physicochemical, mechanical, and functional properties
                        
                    
    
            Abstract Interest in starch‐based films has increased precipitously in response to a growing demand for more sustainable and environmentally sourced food packaging materials. Starch is an optimal candidate for these applications given its ability to form thermoplastic materials and films with affordable and often sustainably sourced plasticizers like those produced as waste byproducts by biodiesel and agricultural industries. Starch is also globally ubiquitous, affordable, and environmentally benign. Although the process of producing starch films is relatively straightforward, numerous factors, including starch source, extraction method, film formulation, processing methods, and curing procedures, drastically impact the ultimate material properties. The significant strides made from 2015 to early 2020 toward elucidating how these variables can be leveraged to improve mechanical and barrier properties as well as the implementation of various additives or procedural modifications are cataloged in this review. Advances toward the development of functional films containing antioxidant, antibacterial, or spoilage indicating components to prevent or signal the degradation of food products are also discussed. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1708844
- PAR ID:
- 10455272
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Comprehensive Reviews in Food Science and Food Safety
- Volume:
- 19
- Issue:
- 6
- ISSN:
- 1541-4337
- Format(s):
- Medium: X Size: p. 3031-3083
- Size(s):
- p. 3031-3083
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Piezo‐ and pyroelectric materials are of interest, for example, for energy harvesting applications, for the development of tactile sensors, as well as neuromorphic computing. This study reports the observation of pyro‐ and piezoelectricity in thin surface‐attached polymer brushes containing zwitterionic and electrolytic side groups that are prepared via surface‐initiated polymerization. The pyro‐ and piezoelectric properties of the surface‐grafted polyelectrolyte brushes are found to sensitively depend on and can be tuned by variation of the counterion. The observed piezo‐ and pyroelectric properties reflect the structural complexity of polymer brushes, and are attributed to a complex interplay of the non‐uniform segment density within these films, together with a non‐uniform distribution of counterions and specific ion effects. The fabrication of thin pyroelectric films by surface‐initiated polymerization is an important addition to the existing strategies toward such materials. Surface‐initiated polymerization, in particular, allows for facile grafting of polar thin polymer films from a wide range of substrates via a straightforward two‐step protocol that obviates the need for multistep laborious synthetic procedures or thin film deposition protocols. The ability to produce polymer brushes with piezo‐ and pyroelectric properties opens up new avenues of application of these materials, for example, in energy harvesting or biosensing.more » « less
- 
            Abstract Democratized mechanical testing offers a promising solution for enabling the widespread adoption of recycled and renewably sourced feedstocks. Locally sourced, sustainable materials often exhibit variable mechanical properties, which limit their large-scale use due to tight manufacturing specifications. Wider access to mechanical testing at the local level can address this challenge by collecting data on the variable properties of sustainable feedstocks, allowing for the development of appropriate, uncertainty-aware mechanics frameworks. These frameworks are essential for designing custom manufacturing approaches that accommodate variable local feedstocks, while ensuring product quality and reliability through post-manufacturing testing. However, traditional mechanical testing apparatuses are too costly and complex for widespread local use by individuals or small, community-based facilities. Despite promising efforts over the past decade to develop more affordable and versatile testing hardware, significant limitations remain in their reliability, adaptability, and ease–of-use. Recent advances in artificial intelligence (AI) present an opportunity to overcome these limitations by reducing human intervention, enhancing instrument reliability, and facilitating data interpretation. AI can thus enable the creation of low-cost, user-friendly mechanical testing infrastructure. Future efforts to democratize mechanical testing are expected to be closely linked with advancements in manufacturing and materials mechanics. This perspective paper highlights the need to embrace AI advancements to facilitate local production from sustainable feedstocks and enhance the development of decentralized, low-/zero-waste supply chains.more » « less
- 
            Abstract The transition metal selenides M1+ySe2(M = V, Ti) have intriguing quantum properties, which make them target materials for controlling properties by thinning them to the ultrathin limit. An appropriate approach for the synthesis of such ultrathin films is by molecular beam epitaxy. Here, it is shown that such synthesized V‐ and Ti‐Se2films can undergo a compositional change by vacuum annealing. Combined scanning tunneling and photoemission spectroscopy is used to determine compositional and structural changes of ultrathin films as a function of annealing temperature. Loss of selenium from the film is accompanied by a morphology change of monolayer height islands to predominantly bilayer height. In addition, crystal periodicity and atomic structure changes are observed. These changes are consistent with a transition from a layered transition metal dichalcogenide (TMDC) to ordered intercalation compounds with V or Ti intercalated in between two layers of their respective TMDCs. These observations may clear up misconception of the nature of previously reported high‐temperature grown transition metal selenides. More significantly, the demonstrated control of the formation of intercalation compounds is a key step toward modifying properties in van der Waals systems and toward expanding material systems for van der Waals heterostructures.more » « less
- 
            Abstract Chalcogenide perovskites have emerged as promising semiconductor materials due to their appealing properties, including tunable bandgaps, high absorption coefficients, reasonable carrier lifetimes and mobilities, excellent chemical stability, and environmentally benign nature. However, beyond the well‐studied BaZrS3, reports on chalcogenide perovskite thin films with diverse compositions are scarce. In this study, the realization of four different types of chalcogenide perovskite thin films with controlled phases, through CS2annealing of amorphous chalcogenide precursor films deposited by pulsed laser deposition (PLD), is reported. This achievement is guided by a thorough theoretical investigation of the phase stability of chalcogenide perovskites. Upon crystallization in the distorted perovskite phase, all materials exhibit photoluminescence (PL) with peak positions in the visible range, consistent with their expected bandgap values. However, the full‐width‐at‐half‐maximum (FWHM) of the PL spectra varies significantly across these materials, ranging from 99 meV for SrHfS3to 231 meV for BaHfS3. The difference is attributed to the difference in kinetic barriers between local structural motifs for the Sr and Ba compounds. The findings underscore the promise of chalcogenide perovskite thin films as an alternative to traditional halide perovskites for optoelectronic applications, while highlighting the challenges in optimizing their synthesis and performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
