Most insect herbivores specialize on a few host plants; however, there are a minority of highly generalized species capable of feeding on hundreds of hosts. Generalism could emerge as a property of the species as a whole, while individuals would still exhibit greater specialization at more specific organizational levels. Yet, we lack studies with generalist insect herbivores directly testing this prediction. Here, we test if the highly generalized fall webworm (Hyphantria cunea) maintains its broad diet through specialization at the population, maternal genotype, or individual level. We reared two populations and multiple matrilines on either a static or rotating diet of four host plants. We found that both populations survived and pupated on all hosts, suggesting population-level generalization. We found evidence for generalization at the genotype level, as maternal genotypes did not vary in performance rankings across host plants. Finally, we found generalism at the individual level, as individuals reared on a rotating diet had no difference or showed intermediate performance to those reared on static diets. Overall, we found support for the maintenance of generalism across all levels, suggesting that generalist species need not be locally specialized to maintain their extremely broad diet.
more »
« less
Nonadaptive host‐use specificity in tropical armored scale insects
Abstract Most herbivorous insects are diet specialists in spite of the apparent advantages of being a generalist. This conundrum might be explained by fitness trade‐offs on alternative host plants, yet the evidence of such trade‐offs has been elusive. Another hypothesis is that specialization is nonadaptive, evolving through neutral population‐genetic processes and within the bounds of historical constraints. Here, we report on a striking lack of evidence for the adaptiveness of specificity in tropical canopy communities of armored scale insects. We find evidence of pervasive diet specialization, and find that host use is phylogenetically conservative, but also find that more‐specialized species occur on fewer of their potential hosts than do less‐specialized species, and are no more abundant where they do occur. Of course local communities might not reflect regional diversity patterns. But based on our samples, comprising hundreds of species of hosts and armored scale insects at two widely separated sites, more‐specialized species do not appear to outperform more generalist species.
more »
« less
- Award ID(s):
- 1744552
- PAR ID:
- 10455295
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 10
- Issue:
- 23
- ISSN:
- 2045-7758
- Page Range / eLocation ID:
- p. 12910-12919
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mikó, István (Ed.)Abstract Several recent reappraisals of supposed generalist parasite species have revealed hidden complexes of species, each with considerably narrower host ranges. Parasitic wasps that attack gall-forming insects on plants have life history strategies that are thought to promote specialization, and though many species are indeed highly specialized, others have been described as generalist parasites. Ormyrus labotus Walker (Hymenoptera: Ormyridae) is one such apparent generalist, with rearing records spanning more than 65 host galls associated with a diverse set of oak tree species and plant tissues. We pair a molecular approach with morphology, host ecology, and phenological data from across a wide geographic sample to test the hypothesis that this supposed generalist is actually a complex of several more specialized species. We find 16–18 putative species within the morphological species O. labotus, each reared from only 1–6 host gall types, though we identify no single unifying axis of specialization. We also find cryptic habitat specialists within two other named Ormyrus species. Our study suggests that caution should be applied when considering host ranges of parasitic insects described solely by morphological traits, particularly given their importance as biocontrol organisms and their role in biodiversity and evolutionary studies.more » « less
-
Doris, Nicole; Vahl, Cate; Kruger, Elijah (Ed.)Dietary generalist insects are important to ecological communities because they are commonly found in many environments and play important roles in ecosystem services like pollination and decomposition. Although dietary generalist herbivores eat a broad range of plant species, regional populations of these species may have significantly narrower or specialized diet breadths. Fall webworm (Hyphantria cunea, hereafter FW) is a dietary generalist at the species level, but we do not know if there is dietary generalism at the population level or how generalism varies across populations. In Colorado, FW larvae feed on only a few plant species, but many plant species are available that are used by FW elsewhere and not locally. We investigated if FW may be an example of a species that is a dietary generalist when considered over a large geographic range but is composed of populations with narrower diets regionally.We reared FW larvae from fifteen maternal lines in Colorado on a local high-quality host plant and compared their performance (survival, development time, and pupal mass) with larvae reared on plants that are not used locally. We found that FW performance was significantly reduced on plant species that Colorado FW does not use. Our findings demonstrate that Colorado FW cannot eat the same plants as FW in the eastern United States and thus lack the physiological ability to feed on these plants. Our research also suggests that FW are a generalist species with narrower diets that vary regionally at the population level.more » « less
-
Abstract Generalist parasites seem to enjoy the clear ecological advantage of a greater chance to find a host, and genetic trade‐offs are therefore often invoked to explain why specialists can coexist with or outcompete generalists. Here we develop an alternative perspective based on optimal foraging theory to explain why spatial clustering can favor specialists even without genetic trade‐offs. Using analytical and simulation models inspired by bacteriophage, we examine the optimal use of two hosts, one yielding greater reproductive success for the parasite than the other. We find that a phage may optimally ignore the worse host when the two hosts are clustered together in dense, ephemeral patches. We model conditions that enhance or reduce this selective benefit to a specialist parasite and show that it is eliminated entirely when the hosts occur only in separate patches. These results show that specialists can be favored even when trade‐offs are weak or absent and emphasize the importance of spatiotemporal heterogeneity in models of optimal niche breadth.more » « less
-
Variation in immune response in the generalist herbivore fall webworm across four common host plantsAbstract Dietary generalist herbivorous insects are widespread and often occur in a variety of environments. Across their geographic range, herbivorous insects may encounter variable plant traits as they feed on high‐quality or low‐quality plants. Herbivorous insect larvae experience both bottom‐up (host plant) and top‐down (parasitoid) factors that affect survival. Host plant quality may affect larval growth and survival in that larvae feeding on low‐quality plants often suffer reduced fitness. However, herbivores on different host plants are also subject to different levels of parasitism. High‐quality plants confer stronger larval performance (higher survival, more offspring), but larvae may also face higher parasitism. In some herbivore species, diet mediates larval immune response. The generalist insect herbivore fall webworm (FW),Hyphantria cuneaDrury (Lepidoptera: Erebidae), is a moth native to North America, and its larvae have considerable variance in their performance when reared on different host plants. We investigated whether diet affects the immune response in FW larvae when they are reared on different host plant species known to vary in food quality. We measured immune response by melanization of a nylon filament. We found significant differences in immune response across host plants, indicating that diet mediates immune response in FW larvae. Our study helps elucidate the factors that cause variation in immune response in a generalist herbivore.more » « less
An official website of the United States government
