skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Provenance of Synorogenic Foreland Basin Strata in Southwestern Montana Requires Revision of Existing Models for Laramide Tectonism: North American Cordillera
Abstract The Laramide province is characterized by foreland basin partitioning through the growth of basement arches. Although variable along the western U.S. margin, the general consensus is initiation of this structural style by the early Campanian (~80 Ma). This has been linked to flat‐slab subduction beneath western North America, but the extent and cause for a flat slab remain debated, invoking the need for better constraints on the regional variations in timing of Laramide deformation. We present new conglomerate clast composition, sandstone petrographic, and detrital zircon U‐Pb geochronologic data from the Upper Cretaceous Beaverhead Group in southwestern Montana that suggest a pre‐Campanian history of basement‐involved deformation. During the early stages of deposition (~88–83 Ma), two separate depositional systems derived sediment from the Lemhi subbasin and distal thrust sheets to the west as well as Paleozoic strata eroding off the exhuming Blacktail‐Snowcrest arch to the east. Our data provide the first conclusive evidence for the longitudinal transport of gravel via Cordilleran paleorivers connecting sediment sources in east central Idaho to depocenters in southwestern Montana and northwestern Wyoming. Furthermore, erosion of Paleozoic strata by this time requires that the Blacktail‐Snowcrest arch was exhuming prior to ~88 Ma in order to remove the Mesozoic overburden. Later (~73–66 Ma) sediment flux was entirely from the foreland‐propagating fold‐thrust belt to the west. These results suggest that Laramide‐style deformation in southwestern Montana preceded initiation elsewhere along the margin, requiring revision of existing models for Laramide tectonism.  more » « less
Award ID(s):
1727504 1728563
PAR ID:
10455533
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Tectonics
Volume:
39
Issue:
2
ISSN:
0278-7407
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Low‐temperature thermochronometric data can reveal the long‐term evolution of erosion, uplift, and thrusting in fold‐thrust belts. We present results from central Idaho and southwestern Montana, where the close spatial overlap of the Sevier fold‐thrust belt and Laramide style, basement‐involved foreland uplifts signify a complex region with an unresolved, long‐term tectono‐thermal history. Inverse QTQt thermal history modeling of new zircon (U‐Th)/He (ZHe,n = 106), and apatite (U‐Th)/He dates (AHe,n = 43) collected from hanging walls of major thrusts systems along a central Idaho to southwestern Montana transect, and apatite fission track results from 6 basement samples, reveal regional thermal and spatial trends related to Sevier and Laramide orogenesis. Inverse modeling of foreland basement uplift samples suggest Phanerozoic exhumation initiated as early as ∼80 Ma and continued through the early Paleogene. Inverse modeling of interior Idaho fold‐thrust belt ZHe samples documents Early Cretaceous cooling at ∼125 Ma in the Lost River Range (western transect), and a younger cooling episode in the Lemhi Arch region (mid‐transect) at ∼90–80 Ma through the late Paleogene. This cooling in the Lemhi Arch temporally overlaps with cooling in southwestern Montana's basement‐cored uplifts, which we interpret as roughly synchronous exhumation related to contractional tectonics and post‐orogenic collapse. These data and models, integrated with independent timing constraints from foreland basin strata and previously published thermochronometric results, suggests that middle Cretaceous deformation of southwestern Montana's basement‐cored uplifts was low magnitude and preceded tectonism along the classic Arizona‐Wyoming Laramide “corridor.” In contrast, Late Cretaceous and Paleogene thrust‐related exhumation was more significant and largely complete by the Eocene. The basement‐involved deformation was contemporaneous with and younger than along‐strike Sevier belt thrusting in central Idaho. 
    more » « less
  2. Abstract This paper investigates the causes of the Late Cretaceous transition from “Sevier” to “Laramide” orogenesis and the spatial and temporal evolution of effective elastic thickness (EET) of the North American lithosphere. We use a Monte Carlo flexural model applied to 34 stratigraphic profiles in the Laramide province and five profiles from the Western Canadian Basin to estimate model parameters which produce flexural profiles that match observed sedimentary thicknesses. Sediment thicknesses come from basins from New Mexico to Canada of Cenomanian–Eocene age that are related to both Sevier and Laramide crustal loads. Flexural models reveal an east‐to‐west spatial decrease in EET in all time intervals analyzed. This spatial decrease in EET may have been associated with either bending stresses associated with the Sevier thrust belt, or increased proximity to attenuated continental crust at the paleocontinental margin. In the Laramide province (i.e., south of ~48°N) there was a coeval, regional decrease in EET between the Cenomanian–Santonian (~98–84 Ma) and the Campanian–Maastrichtian (~77–66 Ma), followed by a minor decrease between the Maastrichtian and Paleogene. However, there was no decrease in EET in the Western Canada Basin (north of ~48°N), which is consistent with a lack of Laramide‐style deformation or flat subduction. We conclude that the regional lithospheric weakening in the late Santonian–Campanian is best explained by hydration of the North American lithosphere thinned by bulldozing by a shallowly subducting Farallon plate. The weakening of the lithosphere facilitated Laramide contractional deformation by focusing end‐loading stresses associated with flat subduction. Laramide deformation in turn may have further reduced EET by weakening the upper crust. Finally, estimates of Campanian–Maastrichtian and Paleogene EET are comparable to current estimates indicating that the modern distribution of lithospheric strength was achieved by the Campanian in response to flat subduction. 
    more » « less
  3. Western North America is the archetypical Cordilleran orogenic system that preserves a Mesozoic to Cenozoic record of oceanic Farallon plate subduction-related processes. After prolonged Late Jurassic through mid-Cretaceous normal-angle Farallon plate subduction that produced the western North American batholith belt and retroarc fold-thrust belt, a period of low-angle, flat-slab subduction during Late Cretaceous−Paleogene time caused upper plate deformation to migrate eastward in the form of the Laramide basement-involved uplifts, which partitioned the original regional foreland basin. Major questions persist about the mechanism and timing of flat-slab subduction, the trajectory of the flat-slab, inter-plate coupling mechanism(s), and the upper-plate deformational response to such processes. Critical for testing various flat-slab hypotheses are the timing, rate, and distribution of exhumation experienced by the Laramide uplifts as recorded by low-temperature thermochronology. In this contribution, we address the timing of regional exhumation of the Laramide uplifts by combining apatite fission-track (AFT) and (U-Th-Sm)/He (AHe) data from 29 new samples with 564 previously published AFT, AHe, and zircon (U-Th)/He ages from Laramide structures in Arizona, Utah, Wyoming, Colorado, Montana, and South Dakota, USA. We integrate our results with existing geological constraints and with new regional cross sections to reconstruct the spatial and temporal history of exhumation driven by Laramide deformation from the mid-Cretaceous to Paleogene. Our analysis suggests a two-stage exhumation of the Laramide province, with an early phase of localized exhumation occurring at ca. 100−80 Ma in Wyoming and Montana, followed by a more regional period of exhumation at ca. 70−50 Ma. Generally, the onset of enhanced exhumation occurs earlier in the northern Laramide province (ca. 90 Ma) and later in the southern Laramide province (ca. 80 Ma). Thermal history models of selected samples along regional cross sections through Utah−Arizona−New Mexico and Wyoming−South Dakota show that exhumation occurred contemporaneously with deformation, implying that Laramide basement block exhumation is coupled with regional deformation. These results have implications for testing proposed migration pathway models of Farallon flat-slab and for how upper-plate deformation is expressed in flat-slab subduction zones in general. 
    more » « less
  4. Abstract The Andes of western Argentina record spatiotemporal variations in morphology, basin geometry, and structural style that correspond with changes in crustal inheritance and convergent margin dynamics. Above the modern Pampean flat‐slab subduction segment (27–33°S), retroarc shortening generated a fold‐thrust belt and intraforeland basement uplifts that converge north of ∼29°S, providing opportunities to explore the effects of varied deformation and subduction regimes on synorogenic sedimentation. We integrate new detrital zircon U‐Pb and apatite (U‐Th)/He analyses with sequentially restored, flexurally balanced cross sections and thermokinematic models at ∼28.5–30°S to link deformation with resulting uplift, erosion, and basin accumulation histories. Tectonic subsidence, topographic evolution, and thermochronometric cooling records point to (a) shortening and distal foreland basin accumulation at ∼18–16 Ma, (b) thrust belt migration, changes in sediment provenance, and enhanced flexural subsidence from ∼16 to 9 Ma, (c) intraforeland basement deformation, local flexure, and drainage reorganization at ∼12–7 Ma, and (d) out‐of‐sequence shortening and exhumation of foreland basin fill by ∼8–2 Ma. Thrust belt kinematics and the reactivation of basement heterogeneities strongly controlled tectonic load configurations and subsidence patterns. Geo/thermochronological data and model results resolve increased shortening and combined thrust belt and intraforeland basement loading in response to ridge collision and Neogene shallowing of the subducted oceanic slab. Finally, this study demonstrates the utility of integrated flexural thermokinematic and erosion modeling for evaluating the geometries, rates, and potential drivers of retroarc deformation and foreland basin evolution during changes in subduction. 
    more » « less
  5. The beginning of the Laramide orogeny is a pivotal time in the geological development of the western United States, but the driving mechanism responsible for mountain building, basin formation and ore mineralization is controversial. Most prominent models suggest this event was caused by the collision of an oceanic plateau with the Southern California Batholith sector of western North America at ca. 88 Ma which caused the angle of subduction beneath the continent to shallow. This subhorizontal (flat) subduction is thought to have led to shut-down of the arc, crustal cooling, and the formation of deep, basement-involved thrust faults that penetrated far into the continental interior. In contrast to these predictions, we show that the Southern California Batholith experienced a magmatic surge from 90 to 70 Ma, the lower crust was hot (835-750°C) and partially molten, and cooling occurred after 75 Ma. These data contradict plateau underthrusting as the driving mechanism for early Laramide deformation at 90-80 Ma; therefore, the Laramide orogeny cannot have been initiated by flat-slab subduction. We propose that the Laramide orogeny is best explained as a two-stage orogeny consisting of: 1) an arc magmatic ‘flare-up’ phase associated with sinistral-reverse ductile shearing in the Southern California Batholith from at 90-75 Ma and coeval dextral-transpression north of the Garlock fault, and 2) a widespread mountain building phase in the Laramide foreland belt from 75-50 Ma. Only that latter phase is linked to flat-slab subduction beneath the Southern California Batholith. 
    more » « less