skip to main content


Title: Morphological–Electrical Property Relation in Cu(In,Ga)(S,Se) 2 Solar Cells: Significance of Crystal Grain Growth and Band Grading by Potassium Treatment
Abstract

Solution‐processed Cu(In,Ga)(S,Se)2 (CIGS) has a great potential for the production of large‐area photovoltaic devices at low cost. However, CIGS solar cells processed from solution exhibit relatively lower performance compared to vacuum‐processed devices because of a lack of proper composition distribution, which is mainly instigated by the limited Se uptake during chalcogenization. In this work, a unique potassium treatment method is utilized to improve the selenium uptake judiciously, enhancing grain sizes and forming a wider bandgap minimum region. Careful engineering of the bandgap grading structure also results in an enlarged space charge region, which is favorable for electron–hole separation and efficient charge carrier collection. Besides, this device processing approach has led to a linearly increasing electron diffusion length and carrier lifetime with increasing the grain size of the CIGS film, which is a critical achievement for enhancing photocurrent yield. Overall, 15% of power conversion efficiency is achieved in solar cells processed from environmentally benign solutions. This approach offers critical insights for precise device design and processing rules for solution‐processed CIGS solar cells.

 
more » « less
NSF-PAR ID:
10455575
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
16
Issue:
48
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. CdSe is potentially an important material for making tandem junction solar cells with Si and CIGS. Thermodynamic calculations reveal the potential Shockley-Queisser efficiency of such a tandem cell to be in the 45% range. CdSe has the optimum bandgap (1.72eV) for a tandem cell with Si. In this paper, we show that this material system is indeed capable of achieving good electronic properties and reasonable devices can be made in the material. We report on fabricating CdSe materials and heterojunction CdSe solar cells in both superstrate and substrate configurations on FTO/glass and metal substrates. CdSe layer was deposited using thermal evaporation and then was post-treated with CdCl2 to enhance the grainsize and passivate grain boundaries. The device was an ideal heterojunction structure consisting of glass/FTO/n+CdS/ n-CdSe/p organic layer/NiO/ITO. The n+ CdS layer acted to prevent hole recombination at the n+/n interface, and the p organic layer (such as PEDOT:PSS or P3HT) acted to prevent electron recombination at the p+/n interface. The NiO layer was deposited on top of the organic layer to prevent decomposition of the organic layer during ITO deposition. World-record open-circuit voltages exceeding 800 mV and currents of ~15 mA/cm2 were obtained in devices. Detailed material measurements such as SEM revealed large grain sizes approaching 8 micrometer in some of the films after grain enhancement. Optical measurements and QE measurements show the bandgap to be 1.72 eV. XPS measurements showed the CdSe film to be n type. Space-charge limited current was used to measure electron mobilities which were in the range of 1-2 cm2/V-s. Capacitance spectroscopy showed the doping densities to be in the range of a few x 1015/cm3. For substrate devices, the quantum efficiency obtained was in the 90% range. 
    more » « less
  3. Spectroscopic ellipsometry (SE) was performed on CuIn Se 2 (CIS) thin films and solar cells with a goal toward optimizing this low bandgap absorber for tandem applications. The CIS thin films and the absorbers in devices were deposited by one-stage thermal co-evaporation on silicon and on Mo-coated soda-lime glass substrates in a deposition system that has yielded CuIn 1-x Ga x Se 2 (CIGS) cells with > 17% efficiency using standard thickness (2.0 μm)x = 0.3 absorbers and > 13% using 0.7 μm low-Ga absorbers. In this study, a mapping capability for CIS Cu stoichiometry y = [Cu]/[In] over the film area was established based on a y-dependent parametric dielectric function (ε 1 , ε 2 ) with bandgap critical point E g decreasing linearly from 1.030 eV for y = 0.7 to 1.016 eV for y = 1.1. In addition, a full set of (ε 1 , ε 2 ) spectra measured for the CIS cell components enables analysis of SE data in terms of an accurate structural model for the device. With this model, spectra in the external quantum efficiency can be predicted, and deviations from this prediction can be attributed to incomplete collection of photogenerated electrons and holes as simulated with a carrier collection profile. 
    more » « less
  4. The antimony selenide thin film solar cells technology becomes promising due to its excellent anisotropic charge transport and brilliant light absorption capability. Especially, the device performance heavily relies on the vertically oriented Sb2Se3grain to promote photoexcited carrier transport. However, crystalline orientation control has been a major issue in Sb2Se3thin film solar cells. Herein, a new strategy has been developed to tailor the crystal growth of Sb2Se3ribbons perpendicular to the substrate by using the structural heterostructured CdS buffer layer. The heterostructured CdS buffer layer is formed by a dual layer of CdS nanorods and nanoparticles. The hexagonal CdS nanorods passivated by a thin cubic CdS nanoparticle layer can promote [211] and [221] directional growth of Sb2Se3ribbons using a close space sublimation approach. The improved buffer/absorber interface, reduced interface defects, and recombination loss contribute to the improved device efficiency of 7.16%. This new structural heterostructured CdS buffer layer can regulate Sb2Se3nanoribbons crystal growth and pave the way to further improve the low‐dimensional chalcogenide thin film solar cell efficiency.

     
    more » « less
  5. Abstract

    Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential ‘drop-in’ replacement to Cu(In,Ga)Se2in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the device efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies.

     
    more » « less