Abstract We extend the locking technique to separate the poleward shift of the atmospheric circulation in response to quadrupled CO2into contributions from (1) CO2increase, (2) cloud radiative effects, and (3) wind and surface humidity‐induced surface heat exchange. In aquaplanet simulations, wind and surface humidity‐induced surface heat exchange accounts for 30–60% of the Hadley cell edge and midlatitude eddy‐driven jet shift. The increase of surface specific humidity dominates and mostly follows global mean warming. Consistent with previous work the remaining shift is attributed to cloud radiative effects. Across CMIP5 models the intermodel variance in the austral winter circulation shift in response to quadrupled CO2is significantly correlated with the response of the subtropical‐subpolar difference of surface heat exchange. The results highlight the dominant role of surface heat exchange for future circulation changes.
more »
« less
Quantifying Key Mechanisms That Contribute to the Deviation of the Tropical Warming Profile From a Moist Adiabat
Abstract Climate models project tropical warming is amplified aloft relative to the surface in response to increased CO2. Here we show moist adiabatic adjustment overpredicts the multimodel mean 300 hPa temperature response by 16.6–25.3% across the CMIP5 model hierarchy. We show three mechanisms influence overprediction: climatological large‐scale circulation, direct effect of increased CO2, and convective entrainment. Accounting for the presence of a climatological large‐scale circulation and the direct effect of CO2reduces the CMIP5 multimodel mean overprediction by 0.7–7.2% and 2.8–3.9%, respectively, but does not eliminate it. To quantify the influence of entrainment, we vary the Tokioka parameter in aquaplanet simulations. When entrainment is decreased by decreasing the Tokioka parameter from 0.1 to 0, overprediction decreases by 9.6% and 10.4% with and without a large‐scale circulation, respectively. The sensitivity of overprediction to climatological entrainment rate in the aquaplanet mostly follows the predictions of zero‐buoyancy bulk‐plume and spectral‐plume models.
more »
« less
- Award ID(s):
- 1742944
- PAR ID:
- 10455581
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Changes to the Madden‐Julian Oscillation in Coupled and Uncoupled Aquaplanet Simulations With 4xCO 2Abstract The impacts of rising carbon dioxide (CO2) concentration and ocean feedbacks on the Madden‐Julian Oscillation (MJO) are investigated with the Community Atmospheric Model Version 5 (CAM5) in an idealized aquaplanet configuration. The climate response associated with quadrupled CO2concentrations and sea surface temperature (SST) warming are examined in both the uncoupled CAM5 and a version coupled to a slab ocean model. Increasing CO2concentrations while holding SST fixed produces only small impacts to MJO characteristics, while the SST change resulting from increased CO2concentrations produces a significant increase in MJO precipitation anomaly amplitude but smaller increase in MJO circulation anomaly amplitude, consistent with previous studies. MJO propagation speed increases in both coupled simulations with quadrupling of CO2and uncoupled simulations with the same climatological surface temperature warming imposed, although propagation speed is increased more with coupling. While climatological SST changes are identical between coupled and uncoupled runs, other aspects of the basic state such as zonal winds do not change identically. For example, climate warming produces stronger superrotation and weaker mean lower tropospheric easterlies in the coupled run, which contributes to greater increases in MJO eastward propagation speed with warming through its effect on moisture advection. The column process, representing the sum of vertical moist static energy (MSE) advection and radiative heating anomalies, also supports faster eastward propagation with warming in the coupled run. How differing basic states between coupled and uncoupled runs contribute to this behavior is discussed in more detail.more » « less
-
In much of East Africa, climatological rainfall follows a bimodal distribution characterized by the long rains(March–May) and short rains (October–December). Most CMIP5 coupled models fail to properly simulatethis annual cycle, typically reversing the amplitudes of the short and long rains relative to observations. Thisstudy investigates how CMIP5 climatological sea surface temperature (SST) biases contribute to simulationerrors in the annual cycle of East African rainfall. Monthly biases in CMIP5 climatological SSTs (508S–508N)are first identified in historical runs (1979–2005) from 31 models and examined for consistency. An atmo-spheric general circulation model (AGCM) is then forced with observed SSTs (1979–2005) generating a set ofcontrol runs and observed SSTs plus the monthly, multimodel mean SST biases generating a set of ‘‘bias’’ runsfor the same period. The control runs generally capture the observed annual cycle of East African rainfallwhile the bias runs capture prominent CMIP5 annual cycle biases, including too little (much) precipitationduring the long rains (short rains) and a 1-month lag in the peak of the long rains relative to observations.Diagnostics reveal the annual cycle biases are associated with seasonally varying north–south- and east–west-oriented SST bias patterns in Indian Ocean and regional-scale atmospheric circulation and stability changes,the latter primarily associated with changes in low-level moist static energy. Overall, the results indicate thatCMIP5 climatological SST biases are the primary driver of the improper simulation of the annual cycle of EastAfrican rainfall. Some implications for climate change projections are discussedmore » « less
-
Summary Traditionally, leaves were thought to be supplied withCO2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO2that is assimilated, vs simply lost to transpiration.Cut leaves ofPopulus deltoidesandBrassica napuswere placed in eitherKCl or one of three [NaH13CO3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO2exiting the leaf across light andCO2response curves in real‐time using a tunable diode laser absorption spectroscope.The rates of assimilation and efflux of xylem‐transportedCO2increased with increasing xylem [13CO2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO2accounted forc.2.5% of the total assimilation in both species in the highest [13CO2*].The majority of xylem‐transportedCO2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO2comprises a small portion of total photosynthesis, but may be more important whenCO2is limiting.more » « less
-
null (Ed.)Abstract While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing-feedback analysis on circulation response to increasing CO 2 concentration in an aquaplanet atmospheric model. This forcing-feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO 2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing-feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases.more » « less
An official website of the United States government
