skip to main content


Title: High‐Resolution Mg/Ca and δ 18 O Patterns in Modern Neogloboquadrina pachyderma From the Fram Strait and Irminger Sea
Abstract

Neogloboquadrina pachydermais the dominant species of planktonic foraminifera found in polar waters and is therefore invaluable for paleoceanographic studies of the high latitudes. However, the geochemistry of this species is complicated due to the development of a thick calcite crust in its final growth stage and at greater depths within the water column. We analyzed the in situ Mg/Ca and δ18O in discrete calcite zones using laser ablation‐inductively coupled plasma‐mass spectrometry, electron probe microanalysis, and secondary ion mass spectrometry within modernN. pachydermashells from the highly dynamic Fram Strait and the seasonally isothermal/isohaline Irminger Sea. Here we compare shell geochemistry to the measured temperature, salinity, and δ18Oswin which the shells calcified to better understand the controls onN. pachydermageochemical heterogeneity. We present a relationship between Mg/Ca and temperature inN. pachydermalamellar calcite that is significantly different than published equations for shells that contained both crust and lamellar calcite. We also document highly variable secondary ion mass spectrometry δ18O results (up to a 3.3‰ range in single shells) on plankton tow samples which we hypothesize is due to the granular texture of shell walls. Finally, we document that the δ18O of the crust and lamellar calcite ofN. pachydermafrom an isothermal/isohaline environment are indistinguishable from each other, indicating that shifts inN. pachydermaδ18O are primarily controlled by changes in environmental temperature and/or salinity rather than differences in the sensitivities of the two calcite types to environmental conditions.

 
more » « less
Award ID(s):
1550041 1658823 2004618
NSF-PAR ID:
10455599
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
35
Issue:
9
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Neogloboquadrina pachyderma is the dominant species of planktonic foraminifera found in polar waters and is therefore invaluable for paleoceanographic studies of the high latitudes. However, the geochemistry of this species is complicated due to the development of a thick calcite crust in its final growth stage and at greater depths within the water column. We analyzed the in situ Mg/Ca and δ18O in discrete calcite zones using laser ablation‐inductively coupled plasma‐mass spectrometry, electron probe microanalysis, and secondary ion mass spectrometry within modern N. pachyderma shells from the highly dynamic Fram Strait and the seasonally isothermal/isohaline Irminger Sea. Here we compare shell geochemistry to the measured temperature, salinity, and δ18Osw in which the shells calcified to better understand the controls on N. pachyderma geochemical heterogeneity. We present a relationship between Mg/Ca and temperature in N. pachyderma lamellar calcite that is significantly different than published equations for shells that contained both crust and lamellar calcite. We also document highly variable secondary ion mass spectrometry δ18O results (up to a 3.3‰ range in single shells) on plankton tow samples which we hypothesize is due to the granular texture of shell walls. Finally, we document that the δ18O of the crust and lamellar calcite of N. pachyderma from an isothermal/isohaline environment are indistinguishable from each other, indicating that shifts in N. pachyderma δ18O are primarily controlled by changes in environmental temperature and/or salinity rather than differences in the sensitivities of the two calcite types to environmental conditions. 
    more » « less
  2. Introduction

    Astarte borealisholds great potential as an archive of seasonal paleoclimate, especially due to its long lifespan (several decades to more than a century) and ubiquitous distribution across high northern latitudes. Furthermore, recent work demonstrates that the isotope geochemistry of the aragonite shell is a faithful proxy of environmental conditions. However, the exceedingly slow growth rates ofA. borealisin some locations (<0.2mm/year) make it difficult to achieve seasonal resolution using standard micromilling techniques for conventional stable isotope analysis. Moreover, oxygen isotope (δ18O) records from species inhabiting brackish environments are notoriously difficult to use as paleoclimate archives because of the simultaneous variation in temperature and δ18Owatervalues.

    Methods

    Here we use secondary ion mass spectrometry (SIMS) to microsample anA. borealisspecimen from the southern Baltic Sea, yielding 451 SIMS δ18Oshellvalues at sub-monthly resolution.

    Results

    SIMS δ18Oshellvalues exhibit a quasi-sinusoidal pattern with 24 local maxima and minima coinciding with 24 annual growth increments between March 1977 and the month before specimen collection in May 2001.

    Discussion

    Age-modeled SIMS δ18Oshellvalues correlate significantly with bothin situtemperature measured from shipborne CTD casts (r2 = 0.52, p<0.001) and sea surface temperature from the ORAS5-SST global reanalysis product for the Baltic Sea region (r2 = 0.42, p<0.001). We observe the strongest correlation between SIMS δ18Oshellvalues and salinity when both datasets are run through a 36-month LOWESS function (r2 = 0.71, p < 0.001). Similarly, we find that LOWESS-smoothed SIMS δ18Oshellvalues exhibit a moderate correlation with the LOWESS-smoothed North Atlantic Oscillation (NAO) Index (r2 = 0.46, p<0.001). Change point analysis supports that SIMS δ18Oshellvalues capture a well-documented regime shift in the NAO circa 1989. We hypothesize that the correlation between the SIMS δ18Oshelltime series and the NAO is enhanced by the latter’s influence on the regional covariance of water temperature and δ18Owatervalues on interannual and longer timescales in the Baltic Sea. These results showcase the potential for SIMS δ18Oshellvalues inA. borealisshells to provide robust paleoclimate information regarding hydroclimate variability from seasonal to decadal timescales.

     
    more » « less
  3. Abstract

    A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.

     
    more » « less
  4. Abstract Rationale

    The use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS).

    Methods

    Paired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS).

    Results

    Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference.

    Conclusions

    The noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear.

     
    more » « less
  5. Abstract Ammonites have disparate adult morphologies indicative of diverse ecological niches, but ammonite hatchlings are small (~1 mm diameter), which raises questions about the similarity of egg incubation and hatchling life mode in ammonites. Modern Nautilus is sometimes used as a model organism for understanding ammonites, but despite their outward similarities, the groups are only distantly related. Trends in ammonite diversity and extinction vulnerability in the fossil record contrast starkly with those of nautilids, and embryonic shells from Late Cretaceous ammonites are two orders of magnitude smaller than nautilid embryonic shells. To investigate possible environmental changes experienced by ammonite hatchlings, we used secondary ion mass spectrometry to analyze the oxygen and carbon isotope composition of the embryonic shells and early postembryonic whorls of five juveniles of Hoploscaphites comprimus obtained from a single concretion in the Fox Hills Formation of South Dakota. Co-occurring bivalves and diagenetic calcite were also analyzed to provide a benthic baseline for comparison. The oxygen isotope ratios of embryonic shells are more like those of benthic bivalves, suggesting that ammonite eggs were laid on the bottom. Ammonite shell immediately after hatching has more negative δ 18 O, suggesting movement to more shallow water that is potentially warmer and/or fresher. After approximately one whorl of postembryonic growth, the values of δ 18 O become more positive in three of the five individuals, suggesting that these animals transitioned to a more demersal mode of life. Two other individuals transition to even lower δ 18 O values that could suggest movement to nearshore brackish water. These data suggest that ammonites, like many modern coleoids, may have spawned at different times of the year. Because scaphites were one of the short-term Cretaceous–Paleogene extinction survivors, it is possible that this characteristic allowed them to develop a broader geographic range and, consequently, a greater resistance to extinction. 
    more » « less