skip to main content


Title: Access to electric light is associated with delays of the dim‐light melatonin onset in a traditionally hunter‐gatherer Toba/Qom community
Abstract

Key to the transition of humans from nomadic hunting‐gathering groups to industrialized and highly urbanized societies was the creation of protected and artificially lit environments that extended the natural daylight hours and consolidated sleep away from nocturnal threats. These conditions isolated humans from the natural regulators of sleep and exposed them to higher levels of light during the evening, which are associated with a later sleep onset. Here, we investigated the extent to which this delayed timing of sleep is due to a delayed circadian system. We studied two communities of Toba/Qom in the northern region of Argentina, one with and the other without access to electricity. These communities have recently transitioned from a hunting‐gathering subsistence to mixed subsistence systems and represent a unique model in which to study the potential effects of the access to artificial light on sleep physiology. We have previously shown that participants in the community with access to electricity had, compared to participants in the community without electricity, later sleep onsets, and shorter sleep bouts. Here, we show they also have a delayed dim‐light melatonin onset (DLMO). This difference is present during the winter but not during the spring when the influence of evening artificial light is likely less relevant. Our results support the notion that the human transition into artificially lit environments had a major impact on physiological systems that regulate sleep timing, including the phase of the master circadian clock.

 
more » « less
NSF-PAR ID:
10455702
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Pineal Research
Volume:
69
Issue:
4
ISSN:
0742-3098
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In early childhood, consolidation of sleep from a biphasic to a monophasic sleep-wake pattern, that is, the transition from sleeping during an afternoon nap and at night to sleeping only during the night, represents a major developmental milestone. Reduced napping behavior is associated with an advance in the timing of the circadian system; however, it is unknown if this advance represents a standard response of the circadian clock to altered patterns of light exposure or if it additionally reflects features of the developing circadian system. Using a mathematical model of the human circadian pacemaker, we investigated the impact of napping and non-napping patterns of light exposure on entrained circadian phases. Simulated light schedules were based on published data from 20 children (34.2 ± 2.0 months) with habitual napping or non-napping sleep patterns (15 nappers). We found the model predicted different circadian phases for napping and non-napping light patterns: both the decrease in afternoon light during the nap and the increase in evening light associated with napping toddlers’ later bedtimes contributed to the observed circadian phase difference produced between napping and non-napping light schedules. We systematically quantified the effects on phase shifting of nap duration, timing, and light intensity, finding larger phase delays occurred for longer and earlier naps. In addition, we simulated phase response curves to a 1-h light pulse and 1-h dark pulse to predict phase and intensity dependence of these changes in light exposure. We found the light pulse produced larger shifts compared with the dark pulse, and we analyzed the model dynamics to identify the features contributing to this asymmetry. These findings suggest that napping status affects circadian timing due to altered patterns of light exposure, with the dynamics of the circadian clock and light processing mediating the effects of the dark pulse associated with a daytime nap.

     
    more » « less
  2. Abstract Study Objectives

    During adolescence, an interplay between biological and environmental factors leads to constrained sleep duration and timing. The high prevalence of sleep deprivation during this developmental period is a public health concern, given the value of restorative sleep for mental, emotional, and physical health. One of the primary contributing factors is the normative delay of the circadian rhythm. Therefore, the present study aimed to evaluate the effect of a gradually advanced morning exercise schedule (30 min shift each day) completed for 45 min on 5 consecutive mornings, on the circadian phase and daytime functioning of adolescents with a late chronotype, compared with a sedentary control group.

    Methods

    A total of 18 physically inactive male adolescents aged 15–18 years spent 6 nights at the sleep laboratory. The morning procedure included either 45 min walking on a treadmill or sedentary activities in dim light. Saliva dim light melatonin onset, evening sleepiness, and daytime functioning were assessed during the first and last night of laboratory attendance.

    Results

    The morning exercise group had a significantly advanced (earlier) circadian phase (27.5 min ± 32.0), while sedentary activity resulted in a phase delay (−34.3 min ± 53.2). Morning exercise also led to higher evening sleepiness in the earlier hours of the night, but not at bedtime. Mood measures improved slightly in both study conditions.

    Conclusions

    These findings highlight the phase-advancing effect of low-intensity morning exercise among this population. Future studies are needed to test the transference of these laboratory findings to adolescents’ real life.

     
    more » « less
  3. Abstract

    Younger adults have a biological disposition to sleep and wake at later times that conflict with early morning obligations like work and school; this conflict leads to inadequate sleep duration and a difference in sleep timing between school days and weekends. The COVID-19 pandemic forced universities and workplaces to shut down in person attendance and implement remote learning and meetings that decreased/removed commute times and gave students more flexibility with their sleep timing. To determine the impact of remote learning on the daily sleep–wake cycle we conducted a natural experiment using wrist actimetry monitors to compare activity patterns and light exposure in three cohorts of students: pre-shutdown in-person learning (2019), during-shutdown remote learning (2020), and post-shutdown in-person learning (2021). Our results show that during-shutdown the difference between school day and weekend sleep onset, duration, and midsleep timing was diminished. For instance, midsleep during school days pre-shutdown occurred 50 min later on weekends (5:14 ± 12 min) than school days (4:24 ± 14 min) but it did not differ under COVID restrictions. Additionally, we found that while the interindividual variance in sleep parameters increased under COVID restrictions the intraindividual variance did not change, indicating that the schedule flexibility did not cause more irregular sleep patterns. In line with our sleep timing results, school day vs. weekend differences in the timing of light exposure present pre- and post-shutdown were absent under COVID restrictions. Our results provide further evidence that increased freedom in class scheduling allows university students to better and consistently align sleep behavior between school days and weekends.

     
    more » « less
  4. Many students self-report that they are “night owls,” which can result from neurodevelopmental delays in the circadian timing system. However, whether an individual considers themselves to be an evening-type versus a morning-type (self-reported chronotype) may also be influenced by academic demands (e.g. class start times, course load) and behavioral habits (e.g. bedtime social media use, late caffeine consumption, daytime napping). If so, then chronotype should be malleable. We surveyed 858 undergraduate students enrolled in demanding science courses at up to three time points. The survey assessed morning/evening chronotype, global sleep quality, academics, and behavioral habits. Evening and morning-type students showed similar demographics, stress levels, and academic demands. At baseline measurements, relative to morning-types, evening-types showed significantly worse sleep quality and duration as well as 22% greater bedtime social media usage, 27% greater daytime napping duration, and 46% greater likelihood of consuming caffeine after 5pm. These behavioral habits partially mediated the effects of selfreported chronotype on sleep quality/duration, even after controlling for demographic factors. Interestingly, 54 students reported switching from being at least moderate evening-types at baseline to being at least moderate morning-types later in the semester and 56 students showed the reverse pattern (6.3% of students switched from “definitely” one chronotype to the other chronotype). Evening-to-morning “chrono-switchers” consumed less caffeine after 5pm and showed significantly better sleep quantity/quality at the later timepoint. Thus, some students may consider themselves to be night owls in part because they consume caffeine later, take more daytime naps, or use more social media at bedtime. Experimental work is needed to determine whether nudging night owls to behave like morning larks results in better sleep health or academic achievement. 
    more » « less
  5. Recent studies have shown that, experiencing the appropriate lighting environment in our day-to-day life is paramount, as different types of light sources impact our mental and physical health in many ways. Researchers have intercon-nected daylong exposure of natural and artificial lights with circadian health, sleep and productivity. That is why having a generalized system to monitor human light exposure and recommending lighting adjustments can be instrumental for maintaining a healthy lifestyle. At present methods for collecting daylong light exposure information and source identification contain certain limitations. Sensing devices are expensive and power consuming and methods of classifications are either inac-curate or possesses certain limitations. In addition, identifying the source of exposure is challenging for a couple of reasons. For example, spectral based classification can be inaccurate, as different sources share common spectral bands or same source can exhibit variation in spectrum. Also irregularities of sensed information in real world makes scenario complex for source identification. In this work, we are presenting a Low Power BLE enabled Color Sensing Board (LPCSB) for sensing background light parameters. Later, utilizing Machine learning and Neural Network based architectures, we try to pinpoint the prime source in the surrounding among four dissimilar types: Incandescent, LED, CFL and Sunlight. Our experimentation includes 27 distinct bulbs and sunlight data in various weather/time of the day/spaces. After tuning classifiers, we have investigated best parameter settings for indoor deployment and also analyzed robustness of each classifier in several imperfect situations. As observed performance degraded significantly after real world deployment, we include synthetic time series examples and filtered data in the training set for boosting accuracy. Result shows that our best model can detect the primary light source type in the surroundings with accuracy up to 99.30% in familiar and up to 90.25% in unfamiliar real world settings with enlarged training set, which is much elevated than earlier endeavors. 
    more » « less