skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chronotype in college science students is associated with behavioral choices and can fluctuate across a semester
Many students self-report that they are “night owls,” which can result from neurodevelopmental delays in the circadian timing system. However, whether an individual considers themselves to be an evening-type versus a morning-type (self-reported chronotype) may also be influenced by academic demands (e.g. class start times, course load) and behavioral habits (e.g. bedtime social media use, late caffeine consumption, daytime napping). If so, then chronotype should be malleable. We surveyed 858 undergraduate students enrolled in demanding science courses at up to three time points. The survey assessed morning/evening chronotype, global sleep quality, academics, and behavioral habits. Evening and morning-type students showed similar demographics, stress levels, and academic demands. At baseline measurements, relative to morning-types, evening-types showed significantly worse sleep quality and duration as well as 22% greater bedtime social media usage, 27% greater daytime napping duration, and 46% greater likelihood of consuming caffeine after 5pm. These behavioral habits partially mediated the effects of selfreported chronotype on sleep quality/duration, even after controlling for demographic factors. Interestingly, 54 students reported switching from being at least moderate evening-types at baseline to being at least moderate morning-types later in the semester and 56 students showed the reverse pattern (6.3% of students switched from “definitely” one chronotype to the other chronotype). Evening-to-morning “chrono-switchers” consumed less caffeine after 5pm and showed significantly better sleep quantity/quality at the later timepoint. Thus, some students may consider themselves to be night owls in part because they consume caffeine later, take more daytime naps, or use more social media at bedtime. Experimental work is needed to determine whether nudging night owls to behave like morning larks results in better sleep health or academic achievement.  more » « less
Award ID(s):
1943323
PAR ID:
10486484
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Chronobiology International
Volume:
40
Issue:
6
ISSN:
0742-0528
Page Range / eLocation ID:
710 to 724
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Academic achievement in the first year of college is critical for setting students on a pathway toward long-term academic and life success, yet little is known about the factors that shape early college academic achievement. Given the important role sleep plays in learning and memory, here we extend this work to evaluate whether nightly sleep duration predicts change in end-of-semester grade point average (GPA). First-year college students from three independent universities provided sleep actigraphy for a month early in their winter/spring academic term across five studies. Findings showed that greater early-term total nightly sleep duration predicted higher end-of-term GPA, an effect that persisted even after controlling for previous-term GPA and daytime sleep. Specifically, every additional hour of average nightly sleep duration early in the semester was associated with an 0.07 increase in end-of-term GPA. Sensitivity analyses using sleep thresholds also indicated that sleeping less than 6 h each night was a period where sleep shifted from helpful to harmful for end-of-term GPA, relative to previous-term GPA. Notably, predictive relationships with GPA were specific to total nightly sleep duration, and not other markers of sleep, such as the midpoint of a student’s nightly sleep window or bedtime timing variability. These findings across five studies establish nightly sleep duration as an important factor in academic success and highlight the potential value of testing early academic term total sleep time interventions during the formative first year of college. 
    more » « less
  2. Circadian rhythms are powerful timekeepers that drive physiological and intellectual functioning throughout the day. These rhythms vary across individuals, with morning chronotypes rising and peaking early in the day and evening chronotypes showing a later rise in arousal, with peaks in the afternoon or evening. Chronotype also varies with age from childhood to adolescence to old age. As a result of these differences, the time of day at which people are best at attending, learning, solving analytical problems, making complex decisions, and even behaving ethically varies. Across studies of attention and memory and a range of allied areas, including academic achievement, judgment and decision-making, and neuropsychological assessment, optimal outcomes are found when performance times align with peaks in circadian arousal, a finding known as the synchrony effect. The benefits of performing in synchrony with one’s chronotype (and the costs of not doing so) are most robust for individuals with strong morning or evening chronotypes and for tasks that require effortful, analytical processing or the suppression of distracting information. Failure to take the synchrony effect into consideration may be a factor in issues ranging from replication difficulties to school timing to assessing intellectual disabilities and apparent cognitive decline in aging. 
    more » « less
  3. We investigated the factors that predispose or precipitate greater intra-individual variability (IIV) in sleep. We further examined the potential consequences of IIV to overall sleep quality and health outcomes, including whether these relationships were found in both self-reported and actigraphy-measured sleep IIV. In Study 1, 699 US adults completed a Sleep Intra-Individual Variability questionnaire and self-reported psychosocial, sleep quality, and health outcomes. In Study 2, 100 university students wore actigraphy and completed psychosocial, sleep, and health surveys at multiple timepoints. In cross-sectional analyses that controlled for mean sleep duration, predisposing/precipitating factors to greater IIV were being an under-represented racial/ethnic minority, having greater stress or trait vulnerability to stress, and showing poorer time management. In addition, both studies showed that greater sleep IIV was associated with decreased overall sleep quality, independent of mean sleep duration. Concordance across subjective and objective IIV measures was modest and similar to concordance observed for subjective-objective mean sleep duration measures. Risk for irregular sleep patterns is increased in specific demographic groups and may be precipitated by, or contribute to, higher stress and time management inefficiencies. Irregular sleep may lead to poor sleep quality and adverse health outcomes, independent of mean sleep duration, underscoring the importance of addressing sleep consistency. 
    more » « less
  4. Abstract Study ObjectiveWe investigated sleep disparities and academic achievement in college. MethodsParticipants were 6,002 first-year college students attending a midsize private university in the southern United States [62.0% female, 18.8% first-generation, 37.4% Black, Indigenous, or People of Color (BIPOC) students]. During the first 3–5 weeks of college, students reported their typical weekday sleep duration, which we classified as short sleep (<7 hours), normal sleep (7–9 hours), or long sleep (>9 hours). ResultsThe odds for short sleep were significantly greater in BIPOC students (95% CI: 1.34–1.66) and female students (95% CI: 1.09–1.35), and the odds for long sleep were greater in BIPOC students (95% CI: 1.38–3.08) and first-generation students (95% CI: 1.04–2.53). In adjusted models, financial burden, employment, stress, STEM academic major, student athlete status, and younger age explained unique variance in sleep duration, fully mediating disparities for females and first-generation students (but only partially mediating disparities for BIPOC students). Short and long sleep predicted worse GPA across students’ first year in college, even after controlling for high school academic index, demographics, and psychosocial variables. ConclusionsHigher education should address sleep health early in college to help remove barriers to success and reduce disparities. 
    more » « less
  5. In early childhood, consolidation of sleep from a biphasic to a monophasic sleep-wake pattern, that is, the transition from sleeping during an afternoon nap and at night to sleeping only during the night, represents a major developmental milestone. Reduced napping behavior is associated with an advance in the timing of the circadian system; however, it is unknown if this advance represents a standard response of the circadian clock to altered patterns of light exposure or if it additionally reflects features of the developing circadian system. Using a mathematical model of the human circadian pacemaker, we investigated the impact of napping and non-napping patterns of light exposure on entrained circadian phases. Simulated light schedules were based on published data from 20 children (34.2 ± 2.0 months) with habitual napping or non-napping sleep patterns (15 nappers). We found the model predicted different circadian phases for napping and non-napping light patterns: both the decrease in afternoon light during the nap and the increase in evening light associated with napping toddlers’ later bedtimes contributed to the observed circadian phase difference produced between napping and non-napping light schedules. We systematically quantified the effects on phase shifting of nap duration, timing, and light intensity, finding larger phase delays occurred for longer and earlier naps. In addition, we simulated phase response curves to a 1-h light pulse and 1-h dark pulse to predict phase and intensity dependence of these changes in light exposure. We found the light pulse produced larger shifts compared with the dark pulse, and we analyzed the model dynamics to identify the features contributing to this asymmetry. These findings suggest that napping status affects circadian timing due to altered patterns of light exposure, with the dynamics of the circadian clock and light processing mediating the effects of the dark pulse associated with a daytime nap. 
    more » « less