skip to main content

Title: Enabling evolutionary studies at multiple scales in Apocynaceae through Hyb‐Seq

Apocynaceae is the 10th largest flowering plant family and a focus for study of plant–insect interactions, especially as mediated by secondary metabolites. However, it has few genomic resources relative to its size. Target capture sequencing is a powerful approach for genome reduction that facilitates studies requiring data from the nuclear genome in non‐model taxa, such as Apocynaceae.


Transcriptomes were used to design probes for targeted sequencing of putatively single‐copy nuclear genes across Apocynaceae. The sequences obtained were used to assess the success of the probe design, the intrageneric and intraspecific variation in the targeted genes, and the utility of the genes for inferring phylogeny.


From 853 candidate nuclear genes, 835 were consistently recovered in single copy and were variable enough for phylogenomics. The inferred gene trees were useful for coalescent‐based species tree analysis, which showed all subfamilies of Apocynaceae as monophyletic, while also resolving relationships among species within the genusApocynum. Intraspecific comparison ofElytropus chilensisindividuals revealed numerous single‐nucleotide polymorphisms with potential for use in population‐level studies.


Community use of this Hyb‐Seq probe set will facilitate and promote progress in the study of Apocynaceae across scales from population genomics to phylogenomics.

more » « less
Award ID(s):
1655553 1655223 1457473
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Applications in Plant Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    New sequencing technologies facilitate the generation of large‐scale molecular data sets for constructing the plant tree of life. We describe a new probe set for target enrichment sequencing to generate nuclear sequence data to build phylogenetic trees with any flagellate land plants, including hornworts, liverworts, mosses, lycophytes, ferns, and all gymnosperms.


    We leveraged existing transcriptome and genome sequence data to design the GoFlag 451 probes, a set of 56,989 probes for target enrichment sequencing of 451 exons that are found in 248 single‐copy or low‐copy nuclear genes across flagellate plant lineages.


    Our results indicate that target enrichment using the GoFlag451 probe set can provide large nuclear data sets that can be used to resolve relationships among both distantly and closely related taxa across the flagellate land plants. We also describe the GoFlag 408 probes, an optimized probe set covering 408 of the 451 exons from the GoFlag 451 probe set that is commercialized by RAPiD Genomics.


    A target enrichment approach using the new probe set provides a relatively low‐cost solution to obtain large‐scale nuclear sequence data for inferring phylogenetic relationships across flagellate land plants.

    more » « less
  2. Premise

    Understanding relationships among orchid species and populations is of critical importance for orchid conservation. Target sequence capture has become a standard method for extracting hundreds of orthologous loci for phylogenomics. Up‐front cost and time associated with design of bait sets makes this method prohibitively expensive for many researchers. Therefore, we designed a target capture kit to reliably sequence hundreds of orthologous loci across orchid lineages.


    We designed an Orchidaceae target capture bait set for 963 single‐copy genes identified in published orchid genome sequences. The bait set was tested on 28 orchid species, with representatives of the subfamilies Cypripedioideae, Orchidoideae, and Epidendroideae.


    Between 1,518,041 and 87,946,590 paired‐end 150‐base reads were generated for target‐enriched genomic libraries. We assembled an average of 812 genes per library for Epidendroideae species and a mean of 501 genes for species in the subfamilies Orchidoideae and Cypripedioideae. Furthermore, libraries had on average 107 of the 254 genes that are included in the Angiosperms353 bait set, allowing for direct comparison of studies using either bait set.


    The Orchidaceae963 kit will enable greater accessibility and utility of next‐generation sequencing for orchid systematics, population genetics, and identification in the illegal orchid trade.

    more » « less
  3. Premise

    Putatively single‐copy nuclear (SCN) loci, which are identified using genomic resources of closely related species, are ideal for phylogenomic inference. However, suitable genomic resources are not available for many clades, including Melastomataceae. We introduce a versatile approach to identify SCN loci for clades with few genomic resources and use it to develop probes for target enrichment in the distantly relatedMemecylonandTibouchina(Melastomataceae).


    We present a two‐tiered pipeline. First, we identified putatively SCN loci using MarkerMiner and transcriptomes from distantly related species in Melastomataceae. Published loci and genes of functional significance were then added (384 total loci). Second, using HybPiper, we retrieved 689 homologous template sequences for these loci using genome‐skimming data from within the focal clades.


    We sequenced 193 loci common toMemecylonandTibouchina. Probes designed from 56 template sequences successfully targeted sequences in both clades. Probes designed from genome‐skimming data within a focal clade were more successful than probes designed from other sources.


    Our pipeline successfully identified and targeted SCN loci inMemecylonandTibouchina, enabling phylogenomic studies in both clades and potentially across Melastomataceae. This pipeline could be easily applied to other clades with few genomic resources.

    more » « less
  4. Premise

    Phylogenetic relationships within major angiosperm clades are increasingly well resolved, but largely informed by plastid data. Areas of poor resolution persist within the Dipsacales, including placement ofHeptacodiumandZabelia, and relationships within the Caprifolieae and Linnaeeae, hindering our interpretation of morphological evolution. Here, we sampled a significant number of nuclear loci using a Hyb‐Seq approach and used these data to infer the Dipsacales phylogeny and estimate divergence times.


    Sampling all major clades within the Dipsacales, we applied the Angiosperms353 probe set to 96 species. Data were filtered based on locus completeness and taxon recovery per locus, and trees were inferred using RAxML and ASTRAL. Plastid loci were assembled from off‐target reads, and 10 fossils were used to calibrate dated trees.


    Varying numbers of targeted loci and off‐target plastomes were recovered from most taxa. Nuclear and plastid data confidently placeHeptacodiumwith Caprifolieae, implying homoplasy in calyx morphology, ovary development, and fruit type. Placement ofZabelia, and relationships within the Caprifolieae and Linnaeeae, remain uncertain. Dipsacales diversification began earlier than suggested by previous angiosperm‐wide dating analyses, but many major splitting events date to the Eocene.


    The Angiosperms353 probe set facilitated the assembly of a large, single‐copy nuclear dataset for the Dipsacales. Nevertheless, many relationships remain unresolved, and resolution was poor for woody clades with low rates of molecular evolution. We favor expanding the Angiosperms353 probe set to include more variable loci and loci of special interest, such as developmental genes, within particular clades.

    more » « less
  5. Abstract

    Understanding the genetics of biological diversification across micro‐ and macro‐evolutionary time scales is a vibrant field of research for molecular ecologists as rapid advances in sequencing technologies promise to overcome former limitations. In palms, an emblematic, economically and ecologically important plant family with high diversity in the tropics, studies of diversification at the population and species levels are still hampered by a lack of genomic markers suitable for the genotyping of large numbers of recently diverged taxa. To fill this gap, we used a whole genome sequencing approach to develop target sequencing for molecular markers in 4,184 genome regions, including 4,051 genes and 133 non‐genic putatively neutral regions. These markers were chosen to cover a wide range of evolutionary rates allowing future studies at the family, genus, species and population levels. Special emphasis was given to the avoidance of copy number variation during marker selection. In addition, a set of 149 well‐known sequence regions previously used as phylogenetic markers by the palm biological research community were included in the target regions, to open the possibility to combine and jointly analyse already available data sets with genomic data to be produced with this new toolkit. The bait set was effective for species belonging to all three palm sub‐families tested (Arecoideae, Ceroxyloideae and Coryphoideae), with high mapping rates, specificity and efficiency. The number of high‐quality single nucleotide polymorphisms (SNPs) detected at both the sub‐family and population levels facilitates efficient analyses of genomic diversity across micro‐ and macro‐evolutionary time scales.

    more » « less