skip to main content


Title: Room‐Temperature Synthesis of 2D Janus Crystals and their Heterostructures
Abstract

Janus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin–orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe2and via plasma stripping followed thermal annealing of MoS2. However, the high processing temperatures prevent growth of other Janus materials and their heterostructures. Here, a room‐temperature technique for the synthesis of a variety of Janus monolayers with high structural and optical quality is reported. This process involves low‐energy reactive radical precursors, which enables selective removal and replacement of the uppermost chalcogen layer, thus transforming classical transition metal dichalcogenides into a Janus structure. The resulting materials show clear mixed character for their excitonic transitions, and more importantly, the presented room‐temperature method enables the demonstration of first vertical and lateral heterojunctions of 2D Janus TMDs. The results present significant and pioneering advances in the synthesis of new classes of 2D materials, and pave the way for the creation of heterostructures from 2D Janus layers.

 
more » « less
NSF-PAR ID:
10455751
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
50
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The 2D van der Waals crystals have shown great promise as potential future electronic materials due to their atomically thin and smooth nature, highly tailorable electronic structure, and mass production compatibility through chemical synthesis. Electronic devices, such as field effect transistors (FETs), from these materials require patterning and fabrication into desired structures. Specifically, the scale up and future development of “2D”-based electronics will inevitably require large numbers of fabrication steps in the patterning of 2D semiconductors, such as transition metal dichalcogenides (TMDs). This is currently carried out via multiple steps of lithography, etching, and transfer. As 2D devices become more complex (e.g., numerous 2D materials, more layers, specific shapes, etc.), the patterning steps can become economically costly and time consuming. Here, we developed a method to directly synthesize a 2D semiconductor, monolayer molybdenum disulfide (MoS2), in arbitrary patterns on insulating SiO2/Si via seed-promoted chemical vapor deposition (CVD) and substrate engineering. This method shows the potential of using the prepatterned substrates as a master template for the repeated growth of monolayer MoS2patterns. Our technique currently produces arbitrary monolayer MoS2patterns at a spatial resolution of 2 μm with excellent homogeneity and transistor performance (room temperature electron mobility of 30 cm2V−1s−1and on–off current ratio of 107). Extending this patterning method to other 2D materials can provide a facile method for the repeatable direct synthesis of 2D materials for future electronics and optoelectronics.

     
    more » « less
  2. Abstract

    Monolayer ternary tellurides based on alloying different transition metal dichalcogenides (TMDs) can result in new two‐dimensional (2D) materials ranging from semiconductors to metals and superconductors with tunable optical and electrical properties. Semiconducting WTe2xS2(1‐x)monolayer possesses two inequivalent valleys in the Brillouin zone, each valley coupling selectively with circularly polarized light (CPL). The degree of valley polarization (DVP) under the excitation of CPL represents the purity of valley polarized photoluminescence (PL), a critical parameter for opto‐valleytronic applications. Here, new strategies to efficiently tailor the valley‐polarized PL from semiconducting monolayer WTe2xS2(1‐x)at room temperature (RT) through alloying and back‐gating are presented. The DVP at RT is found to increase drastically from < 5% in WS2to 40% in WTe0.12S1.88by Te‐alloying to enhance the spin‐orbit coupling. Further enhancement and control of the DVP from 40% up to 75% is demonstrated by electrostatically doping the monolayer WTe0.12S1.88via metallic 1T′‐WTe2electrodes, where the use of 1T′‐WTe2substantially lowers the Schottky barrier height (SBH) and weakens the Fermi‐level pinning of the electrical contacts. The demonstration of drastically enhanced DVP and electrical tunability in the valley‐polarized emission from 1T′‐WTe2/WTe0.12S1.88heterostructures paves new pathways towards harnessing valley excitons in ultrathin valleytronic devices for RT applications.

     
    more » « less
  3. Abstract

    The large‐area synthesis of high‐quality MoS2plays an important role in realizing industrial applications of optoelectronics, nanoelectronics, and flexible devices. However, current techniques for chemical vapor deposition (CVD)‐grown MoS2require a high synthetic temperature and a transfer process, which limits its utilization in device fabrications. Here, the direct synthesis of high‐quality monolayer MoS2with the domain size up to 120 µm by metal‐organic CVD (MOCVD) at a temperature of 320 °C is reported. Owing to the low‐substrate temperature, the MOCVD‐grown MoS2exhibits low impurity doping and nearly unstrained properties on the growth substrate, demonstrating enhanced electronic performance with high electron mobility of 68.3 cm2V−1s−1at room temperature. In addition, by tuning the precursor ratio, a better understanding of the MoS2growth process via a geometric model of the MoS2flake shape, is developed, which can provide further guidance for the synthesis of 2D materials.

     
    more » « less
  4. Abstract

    Mechanical exfoliation yields high‐quality 2D materials but is challenging to scale up due to the small lateral size and low yield of the exfoliated crystals. Gold‐mediated exfoliation of macroscale monolayer MoS2and related crystals addresses this problem. However, it remains unclear whether this method can be extended to other metals. Herein, mechanical exfoliation of MoS2on a range of metallic substrates is studied. It is found that Au outperforms all the other metals in their ability to exfoliate macroscale monolayer MoS2. This is rationalized by gold's ability to resist oxidation, which is compromised on other metals and leads to a weakened binding with MoS2. An anomalously high monolayer yield found for Ag suggests that the large interfacial strain in the metal–MoS2heterostructures measured by Raman spectroscopy also is a critical factor facilitating the exfoliation, while the relative differences in the metal–MoS2binding play only a minor role. These results provide a new incentive for investigations of 2D material‐substrate combinations applicable where high‐quality 2D crystals of macroscopic dimensions are of importance.

     
    more » « less
  5. Abstract

    Reconfiguration of amorphous complex oxides provides a readily controllable source of stress that can be leveraged in nanoscale assembly to access a broad range of 3D geometries and hybrid materials. An amorphous SrTiO3layer on a Si:B/Si1−xGex:B heterostructure is reconfigured at the atomic scale upon heating, exhibiting a change in volume of ≈2% and accompanying biaxial stress. The Si:B/Si1−xGex:B bilayer is fabricated by molecular beam epitaxy, followed by sputter deposition of SrTiO3at room temperature. The processes yield a hybrid oxide/semiconductor nanomembrane. Upon release from the substrate, the nanomembrane rolls up and has a curvature determined by the stress in the epitaxially grown Si:B/Si1−xGex:B heterostructure. Heating to 600 °C leads to a decrease of the radius of curvature consistent with the development of a large compressive biaxial stress during the reconfiguration of SrTiO3. The control of stresses via post‐deposition processing provides a new route to the assembly of complex‐oxide‐based heterostructures in 3D geometry. The reconfiguration of metastable mechanical stressors enables i) synthesis of various types of strained superlattice structures that cannot be fabricated by direct growth and ii) technologies based on strain engineering of complex oxides via highly scalable lithographic processes and on large‐area semiconductor substrates.

     
    more » « less