skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applications and efficient algorithms for integer programming problems on monotone constraints
Abstract We present here classes of integer programming problems that are solvable efficiently and with combinatorial flow algorithms. The problems are characterized by constraints that have either at most two variables per inequality that appear with opposite sign coefficients, or have in addition a third variable that appears only in one constraint. Such integer programs, referred to here as monotone IP2 or IP3, are shown to be solvable in polynomial time for polynomially bounded variables. This article demonstrates the vast applicability of IP2 and IP3 as models for integer programs in multiple scenarios. Since the problems are easily recognized, the knowledge of their structure enables one to determine easily that they are efficiently solvable. The variety of applications, that previously were not known to be solved as efficiently, underlies the importance of recognizing this structure and, if appropriate, formulating problems as monotone IP2 or IP3. Additionally, if there is flexibility in the modeling of an integer programming problem, the formulation choice as monotone IP2 or IP3 leads to efficient algorithms, whereas slightly different modeling choices would lead to NP‐hard problems.  more » « less
Award ID(s):
1760102
PAR ID:
10455882
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Networks
Volume:
77
Issue:
1
ISSN:
0028-3045
Format(s):
Medium: X Size: p. 21-49
Size(s):
p. 21-49
Sponsoring Org:
National Science Foundation
More Like this
  1. The design of cyber-physical systems (CPSs) requires methods and tools that can efficiently reason about the interaction between discrete models, e.g., representing the behaviors of ``cyber'' components, and continuous models of physical processes. Boolean methods such as satisfiability (SAT) solving are successful in tackling large combinatorial search problems for the design and verification of hardware and software components. On the other hand, problems in control, communications, signal processing, and machine learning often rely on convex programming as a powerful solution engine. However, despite their strengths, neither approach would work in isolation for CPSs. In this paper, we present a new satisfiability modulo convex programming (SMC) framework that integrates SAT solving and convex optimization to efficiently reason about Boolean and convex constraints at the same time. We exploit the properties of a class of logic formulas over Boolean and nonlinear real predicates, termed monotone satisfiability modulo convex formulas, whose satisfiability can be checked via a finite number of convex programs. Following the lazy satisfiability modulo theory (SMT) paradigm, we develop a new decision procedure for monotone SMC formulas, which coordinates SAT solving and convex programming to provide a satisfying assignment or determine that the formula is unsatisfiable. A key step in our coordination scheme is the efficient generation of succinct infeasibility proofs for inconsistent constraints that can support conflict-driven learning and accelerate the search. We demonstrate our approach on different CPS design problems, including spacecraft docking mission control, robotic motion planning, and secure state estimation. We show that SMC can handle more complex problem instances than state-of-the-art alternative techniques based on SMT solving and mixed integer convex programming. 
    more » « less
  2. null (Ed.)
    Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently been formulated as an Integer Linear Programming (ILP) problem to take advantages of popular Mixed-Integer Linear Programming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may combinatorial difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem constraints can be transformed to directly delineate the problem convex hull in the data preprocessing stage, then a solution can be obtained by using linear programming methods without combinatorial difficulties. The tightening process, however, is fundamentally challenging because of the existence of integer variables. In this paper, an innovative and systematic approach is established for the first time to tighten the formulations of individual parts, each with multiple operations, in the data preprocessing stage. It is a major advancement of our previous work on problems with binary and continuous variables to integer variables. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by the binary variables. With binary and continuous variables only, it is proved that the vertices of the convex hull can be obtained based on vertices of the linear problem after relaxing binary requirements. These vertices are then converted to tightened constraints for general use. This approach significantly improves our previous results on tightening individual operations. Numerical results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other ILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved. 
    more » « less
  3. We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming (SDP) approximation that can be solved efficiently. We prove that the popular approximate S-lemma method—which is valid only in the case of continuous uncertainty—is weaker than our approximation. We also show that all results can be extended to the two-stage robust quadratic optimization setting if the problem has complete recourse. We assess the effectiveness of our proposed SDP reformulations and demonstrate their superiority over the state-of-the-art solution schemes on instances of least squares, project management, and multi-item newsvendor problems. 
    more » « less
  4. null (Ed.)
    Probabilistic programming languages aim to describe and automate Bayesian modeling and inference. Modern languages support programmable inference, which allows users to customize inference algorithms by incorporating guide programs to improve inference performance. For Bayesian inference to be sound, guide programs must be compatible with model programs. One pervasive but challenging condition for model-guide compatibility is absolute continuity, which requires that the model and guide programs define probability distributions with the same support. This paper presents a new probabilistic programming language that guarantees absolute continuity, and features general programming constructs, such as branching and recursion. Model and guide programs are implemented as coroutines that communicate with each other to synchronize the set of random variables they sample during their execution. Novel guide types describe and enforce communication protocols between coroutines. If the model and guide are well-typed using the same protocol, then they are guaranteed to enjoy absolute continuity. An efficient algorithm infers guide types from code so that users do not have to specify the types. The new programming language is evaluated with an implementation that includes the type-inference algorithm and a prototype compiler that targets Pyro. Experiments show that our language is capable of expressing a variety of probabilistic models with nontrivial control flow and recursion, and that the coroutine-based computation does not introduce significant overhead in actual Bayesian inference. 
    more » « less
  5. We propose a geometric framework to describe and analyse a wide array of operator splitting methods for solving monotone inclusion problems. The initial inclusion problem, which typically involves several operators combined through monotonicity-preserving operations, is seldom solvable in its original form. We embed it in an auxiliary space, where it is associated with a surrogate monotone inclusion problem with a more tractable structure and which allows for easy recovery of solutions to the initial problem. The surrogate problem is solved by successive projections onto half-spaces containing its solution set. The outer approximation half-spaces are constructed by using the individual operators present in the model separately. This geometric framework is shown to encompass traditional methods as well as state-of-the-art asynchronous block-iterative algorithms, and its flexible structure provides a pattern to design new ones. 
    more » « less