skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydraulic traits are not robust predictors of tree species stem growth during a severe drought in a wet tropical forest
Abstract Severe droughts have led to lower plant growth and high mortality in many ecosystems worldwide, including tropical forests. Drought vulnerability differs among species, but there is limited consensus on the nature and degree of this variation in tropical forest communities. Understanding species‐level vulnerability to drought requires examination of hydraulic traits since these reflect the different strategies species employ for surviving drought. Here, we examined hydraulic traits and growth reductions during a severe drought for 12 common woody species in a wet tropical forest community in Puerto Rico to ask: Q1. To what extent can hydraulic traits predict growth declines during drought? We expected that species with more hydraulically vulnerable xylem and narrower safety margins (SM P50 ) would grow less during drought. Q2. How does species successional association relate to the levels of vulnerability to drought and hydraulic strategies? We predicted that early‐ and mid‐successional species would exhibit more acquisitive strategies, making them more susceptible to drought than shade‐tolerant species. Q3. What are the different hydraulic strategies employed by species and are there trade‐offs between drought avoidance and drought tolerance? We anticipated that species with greater water storage capacity would have leaves that lose turgor at higher xylem water potential and be less resistant to embolism forming in their xylem (P 50 ). We found a large range of variation in hydraulic traits across species; however, they did not closely capture the magnitude of growth declines during drought. Among larger trees (≥10 cm diameter at breast height—DBH), some tree species with high xylem embolism vulnerability (P 50 ) and risk of hydraulic failure (SM P50 ) experienced substantial growth declines during drought, but this pattern was not consistent across species. We found a trade‐off among species between drought avoidance (capacitance) and drought tolerating (P 50 ) in this tropical forest community. Hydraulic strategies did not align with successional associations. Instead, some of the more drought‐vulnerable species were shade‐tolerant dominants in the community, suggesting that a drying climate could lead to shifts in long‐term forest composition and function in Puerto Rico and the Caribbean. Read the free Plain Language Summary for this article on the Journal blog.  more » « less
Award ID(s):
1753810 1831952
PAR ID:
10455938
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Functional Ecology
Volume:
37
Issue:
2
ISSN:
0269-8463
Page Range / eLocation ID:
447 to 460
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Plant ecophysiological trade-offs between different strategies for tolerating stresses are widely theorized to shape forest functional diversity and vulnerability to climate change. However, trade-offs between hydraulic and stomatal regulation during natural droughts remain under-studied, especially in tropical forests. We investigated eleven mature forest canopy trees in central Amazonia during the strong 2015 El Niño. We found greater xylem embolism resistance (P50 = − 3.3 ± 0.8 MPa) and hydraulic safety margin (HSM = 2.12 ± 0.57 MPa) than previously observed in more precipitation-seasonal rainforests of eastern Amazonia and central America. We also discovered that taller trees exhibited lower embolism resistance and greater stomatal sensitivity, a height-structured trade-off between hydraulic resistance and active stomatal regulation. Such active regulation of tree water status, triggered by the onset of stem embolism, acted as a feedback to avoid further increases in embolism, and also explained declines in photosynthesis and transpiration. These results suggest that canopy trees exhibit a conservative hydraulic strategy to endure drought, with trade-offs between investment in xylem to reduce vulnerability to hydraulic failure, and active stomatal regulation to protect against low water potentials. These findings improve our understanding of strategies in tropical forest canopies and contribute to more accurate prediction of drought responses. 
    more » « less
  2. • Drought-induced xylem embolism is a primary cause of plant mortality. Although ~70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. • We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. • Compared to other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than non-cycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. • Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits–particularly vessels–may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads. 
    more » « less
  3. null (Ed.)
    Quantitative knowledge of xylem physical tolerance limits to dehydration is essential to understanding plant drought tolerance but is lacking in many long-vessel angiosperms. We examine the hypothesis that a fundamental association between sustained xylem water transport and downstream tissue function should select for xylem that avoids embolism in long-vessel trees by quantifying xylem capacity to withstand air entry of western North American oaks ( Quercus spp.). Optical visualization showed that 50% of embolism occurs at water potentials below −2.7 MPa in all 19 species, and −6.6 MPa in the most resistant species. By mapping the evolution of xylem vulnerability to embolism onto a fossil-dated phylogeny of the western North American oaks, we found large differences between clades (sections) while closely related species within each clade vary little in their capacity to withstand air entry. Phylogenetic conservatism in xylem physical tolerance, together with a significant correlation between species distributions along rainfall gradients and their dehydration tolerance, suggests that closely related species occupy similar climatic niches and that species' geographic ranges may have shifted along aridity gradients in accordance with their physical tolerance. Such trends, coupled with evolutionary associations between capacity to withstand xylem embolism and other hydraulic-related traits, yield wide margins of safety against embolism in oaks from diverse habitats. Evolved responses of the vascular system to aridity support the embolism avoidance hypothesis and reveal the importance of quantifying plant capacity to withstand xylem embolism for understanding function and biogeography of some of the Northern Hemisphere’s most ecologically and economically important plants. 
    more » « less
  4. Summary A surge of papers have reported low leaf vulnerability to xylem embolism during drought. Here, we focus on the less studied, and more sensitive, outside‐xylem leaf hydraulic responses to multiple internal and external conditions. Studies of 34 species have resolved substantial vulnerability to dehydration of the outside‐xylem pathways, and studies of leaf hydraulic responses to light also implicate dynamic outside‐xylem responses. Detailed experiments suggest these dynamic responses arise at least in part from strong control of radial water movement across the vein bundle sheath. While leaf xylem vulnerability may influence leaf and plant survival during extreme drought, outside‐xylem dynamic responses are important for the control and resilience of water transport and leaf water status for gas exchange and growth. 
    more » « less
  5. Abstract Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site‐level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50values (< −2 MPa) are common across the wet and dry tropics. This high site‐level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes. 
    more » « less