skip to main content


Title: Temporal and spectral multiplexing for EUV multibeam ptychography with a high harmonic light source
We demonstrate temporally multiplexed multibeam ptychography implemented for the first time in the EUV, by using a high harmonic based light source. This allows for simultaneous imaging of different sample areas, or of the same area at different times or incidence angles. Furthermore, we show that this technique is compatible with wavelength multiplexing for multibeam spectroscopic imaging, taking full advantage of the temporal and spectral characteristics of high harmonic light sources. This technique enables increased data throughput using a simple experimental implementation and with high photon efficiency.  more » « less
Award ID(s):
1734006
NSF-PAR ID:
10455996
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
17
ISSN:
1094-4087
Page Range / eLocation ID:
30331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Near infrared and infrared multi-photon imaging through or inside bone is an emerging field that promises to help answer many biological questions that require minimally invasive intravital imaging. Neuroscience researchers especially have begun to take advantage of long wavelength imaging to overcome multiple scattering and image deep inside the brain through intact or partially intact bone. Since the murine model is used in many biological experiments, here we investigate the optical aberrations caused by mouse cranial bone, and their effects on light propagation. We previously developed a ray tracing model that uses second harmonic generation in collagen fibers of bone to estimate the refractive index structure of the sample. This technique is able to rapidly provide initial information for a closed loop adaptive optics system. However, the ray tracing method does not account for refraction or scattering. Here, we extend our work to investigate the wavefront aberrations in bone using a full electromagnetic model. We used Finite-Difference Time-Domain modeling of light propagation in refractive index bone datasets acquired with second harmonic generation imaging. In this paper we show modeled wavefront phase from different originating points across the field of view. 
    more » « less
  2. Ptychographic coherent diffractive imaging enables diffraction-limited imaging of nanoscale structures at extreme ultraviolet and x-ray wavelengths, where high-quality image-forming optics are not available. However, its reliance on a set of diverse diffraction patterns makes it challenging to use ptychography to image highly periodic samples, limiting its application to defect inspection for electronic and photonic devices. Here, we use a vortex high harmonic light beam driven by a laser carrying orbital angular momentum to implement extreme ultraviolet ptychographic imaging of highly periodic samples with high fidelity and reliability. We also demonstrate, for the first time to our knowledge, ptychographic imaging of an isolated, near-diffraction-limited defect in an otherwise periodic sample using vortex high harmonic beams. This enhanced metrology technique can enable high-fidelity imaging and inspection of highly periodic structures for next-generation nano, energy, photonic, and quantum devices.

     
    more » « less
  3. ABSTRACT

    We present the discovery of 37 pulsars from ∼ 20 yr old archival data of the Parkes Multibeam Pulsar Survey using a new FFT-based search pipeline optimized for discovering narrow-duty cycle pulsars. When developing our pulsar search pipeline, we noticed that the signal-to-noise ratios of folded and optimized pulsars often exceeded that achieved in the spectral domain by a factor of two or greater, in particular for narrow duty cycle ones. Based on simulations, we verified that this is a feature of search codes that sum harmonics incoherently and found that many promising pulsar candidates are revealed when hundreds of candidates per beam even with modest spectral signal-to-noise ratios of S/N∼5–6 in higher-harmonic folds (up to 32 harmonics) are folded. Of these candidates, 37 were confirmed as new pulsars and a further 37 would have been new discoveries if our search strategies had been used at the time of their initial analysis. While 19 of these newly discovered pulsars have also been independently discovered in more recent pulsar surveys, 18 are exclusive to only the Parkes Multibeam Pulsar Survey data. Some of the notable discoveries include: PSRs J1635−47 and J1739−31, which show pronounced high-frequency emission; PSRs J1655−40 and J1843−08 belong to the nulling/intermittent class of pulsars; and PSR J1636−51 is an interesting binary system in a ∼0.75 d orbit and shows hints of eclipsing behaviour – unusual given the 340 ms rotation period of the pulsar. Our results highlight the importance of reprocessing archival pulsar surveys and using refined search techniques to increase the normal pulsar population.

     
    more » « less
  4. Imaging submicron fluorescent microspheres are the standard method for measuring resolution in multiphoton microscopy. However, when using high-energy pulsed lasers, photobleaching and heating of the solution medium may deteriorate the images, resulting in an inaccurate resolution measurement. Moreover, due to the weak higher-order response of fluorescent microspheres, measuring three-photon resolution using three-photon fluorescence (3PEF) and third-harmonic generation (THG) signals is more difficult. In this report, we demonstrate a methodology for complete characterization of multiphoton microscopes based on second- and third-harmonic generation signals from the sharp edge of GaAs wafers. This simple methodology, which we call the nonlinear knife-edge technique, provides fast and consistent lateral and axial resolution measurement with negligible photobleaching effect on semiconductor wafers. In addition, this technique provides information on the field curvature of the imaging system, and perhaps other distortions of the imaging system, adding greater capability compared to existing techniques.

     
    more » « less
  5. Abstract

    Reduced light is one of the primary threats to seagrass meadows in the coming decades, with reduced light reaching the benthos due to eutrophication. We assessed a multispectral photography technique using near‐infrared photography to estimate chlorophyll content in the seagrassZostera marina. Using near‐infrared and red wavelength cameras in the lab environment, we measured normalized difference vegetation index (NDVI) in photographs of sampled seagrass leaves. In samples taken from three different environments, we found a positive correlation between lab‐based NDVI and chlorophyll content, with variation attributable to leaf age. In samples grown under different light conditions, we found high levels of NDVI associated with lower light possibly due to seagrass photoacclimation. This method may be used in addition to existing seagrass monitoring methods to collect data on seagrass photic status and estimate chlorophyll content, and detect possible light limitation due to turbidity or high epibiota cover. The relatively low cost and time required for this method may make it useful where researchers are already collecting and imaging seagrass as part of routine monitoring.

     
    more » « less