skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite difference time domain modeling of wavefront aberrations in bone using second harmonic generation microscopy
Near infrared and infrared multi-photon imaging through or inside bone is an emerging field that promises to help answer many biological questions that require minimally invasive intravital imaging. Neuroscience researchers especially have begun to take advantage of long wavelength imaging to overcome multiple scattering and image deep inside the brain through intact or partially intact bone. Since the murine model is used in many biological experiments, here we investigate the optical aberrations caused by mouse cranial bone, and their effects on light propagation. We previously developed a ray tracing model that uses second harmonic generation in collagen fibers of bone to estimate the refractive index structure of the sample. This technique is able to rapidly provide initial information for a closed loop adaptive optics system. However, the ray tracing method does not account for refraction or scattering. Here, we extend our work to investigate the wavefront aberrations in bone using a full electromagnetic model. We used Finite-Difference Time-Domain modeling of light propagation in refractive index bone datasets acquired with second harmonic generation imaging. In this paper we show modeled wavefront phase from different originating points across the field of view.  more » « less
Award ID(s):
1706916
PAR ID:
10099735
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proc. SPIE 10502, Adaptive Optics and Wavefront Control for Biological Systems IV
Page Range / eLocation ID:
105020R
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intravital microscopy using multiphoton processes is the standard tool for deep tissue imaging inside of biological specimens. Usually, near-infrared and infrared light is used to excite the sample, which enables imaging several mean free path inside a scattering tissues. Using longer wavelengths, however, increases the width of the effective multiphoton Point Spread Function (PSF). Many features inside of cells and tissues are smaller than the diffraction limit, and therefore not possible to distinguish using a large PSF. Microscopy using high refractive index microspheres has shown promise to increase the numerical aperture of an imaging system and enhance the resolution. It has been shown that microspheres can image features ~λ/7 using single photon process fluorescence. In this work, we investigate resolution enhancement for Second Harmonic Generation (SHG) and 2-photon fluorescence microscopy. We used Barium Titanate glass microspheres with diameters ∼20–30 μm and refractive index ∼1.9–2.1. We show microsphere-assisted SHG imaging in bone collagen fibers. Since bone is a very dense tissue constructed of bundles of collagen fibers, it is nontrivial to image individual fibers. We placed microspheres on a dense area of the mouse cranial bone, and achieved imaging of individual fibers. We found that microsphere assisted SHG imaging resolves features of the bone fibers that are not readily visible in conventional SHG imaging. We extended this work to 2-photon microscopy of mitochondria in mouse soleus muscle, and with the help of microsphere resolving power, we were able to trace individual mitochondrion from their ensemble. 
    more » « less
  2. Abstract Wavefront‐shaping (WS) enables imaging through scattering tissues like bone, which is important for neuroscience and bone‐regeneration research. WS corrects for the optical aberrations at a given depth and field‐of‐view (FOV) within the sample; the extent of the validity of which is limited to a region known as the isoplanatic patch (IP). Knowing this parameter helps to estimate the number of corrections needed for WS imaging over a given FOV. In this paper, we first present direct transmissive measurement of murine skull IP using digital optical phase conjugation based focusing. Second, we extend our previously reported phase accumulation ray tracing (PART) method to provide in‐situin‐silicoestimation of IP, called correlative PART (cPART). Our results show an IP range of 1 to 3 μm for mice within an age range of 8 to 14 days old and 1.00 ± 0.25 μm in a 12‐week old adult skull. Consistency between the two measurement approaches indicates that cPART can be used to approximate the IP before a WS experiment, which can be used to calculate the number of corrections required within a given field of view. 
    more » « less
  3. Bone is a unique biological composite material made up of a highly structured collagen mesh matrix and mineral deposits. Although mineral provides stiffness, collagen’s secondary organization provides a critical role in bone elasticity. Here, we performed polarimetric analysis of bone collagen fibers using second harmonic generation (SHG) imaging to evaluate lamella sheets and collagen fiber integrity in intact cranial bone. Our polarimetric data was fitted to a model accounting for diattenuation, polarization cross-talk, and birefringence. We compared our data to the fitted model and found no significant difference between our polarimetric observation and the representation of these scattering properties up to 70µm deep. We also observed a loss of resolution as we imaged up to 70µm deep into bone but a conservation of polarimetric response. Polarimetric SHG allows for the discrimination of collagen lamellar sheet structures in intact bone. Our work could allow for label-free identification of disease states and monitor the efficacy of therapies for bone disorders. 
    more » « less
  4. Diffraction-limited optical imaging through scattering media has the potential to transform many applications such as airborne and space-based imaging (through the atmosphere), bioimaging (through skin and human tissue), and fiber-based imaging (through fiber bundles). Existing wavefront shaping methods can image through scattering media and other obscurants by optically correcting wavefront aberrations using high-resolution spatial light modulators—but these methods generally require (i) guidestars, (ii) controlled illumination, (iii) point scanning, and/or (iv) statics scenes and aberrations. We propose neural wavefront shaping (NeuWS), a scanning-free wavefront shaping technique that integrates maximum likelihood estimation, measurement modulation, and neural signal representations to reconstruct diffraction-limited images through strong static and dynamic scattering media without guidestars, sparse targets, controlled illumination, nor specialized image sensors. We experimentally demonstrate guidestar-free, wide field-of-view, high-resolution, diffraction-limited imaging of extended, nonsparse, and static/dynamic scenes captured through static/dynamic aberrations. 
    more » « less
  5. Reconstructing and designing media with continuously-varying refractive index fields remains a challenging problem in computer graphics. A core difficulty in trying to tackle this inverse problem is that light travels inside such media along curves, rather than straight lines. Existing techniques for this problem make strong assumptions on the shape of the ray inside the medium, and thus limit themselves to media where the ray deflection is relatively small. More recently, differentiable rendering techniques have relaxed this limitation, by making it possible to differentiably simulate curved light paths. However, the automatic differentiation algorithms underlying these techniques use large amounts of memory, restricting existing differentiable rendering techniques to relatively small media and low spatial resolutions. We present a method for optimizing refractive index fields that both accounts for curved light paths and has a small, constant memory footprint. We use the adjoint state method to derive a set of equations for computing derivatives with respect to the refractive index field of optimization objectives that are subject to nonlinear ray tracing constraints. We additionally introduce discretization schemes to numerically evaluate these equations, without the need to store nonlinear ray trajectories in memory, significantly reducing the memory requirements of our algorithm. We use our technique to optimize high-resolution refractive index fields for a variety of applications, including creating different types of displays (multiview, lightfield, caustic), designing gradient-index optics, and reconstructing gas flows. 
    more » « less