skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A robust approach to 3D neuron shape representation for quantification and classification
Abstract We consider the problem of finding an accurate representation of neuron shapes, extracting sub-cellular features, and classifying neurons based on neuron shapes. In neuroscience research, the skeleton representation is often used as a compact and abstract representation of neuron shapes. However, existing methods are limited to getting and analyzing “curve” skeletons which can only be applied for tubular shapes. This paper presents a 3D neuron morphology analysis method for more general and complex neuron shapes. First, we introduce the concept of skeleton mesh to represent general neuron shapes and propose a novel method for computing mesh representations from 3D surface point clouds. A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised learning method is used to embed the skeleton graph for neuron classification. Extensive experiment results are provided and demonstrate the robustness of our method to analyze neuron morphology.  more » « less
Award ID(s):
1664172
PAR ID:
10486726
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
BMC Bioinformatics
Volume:
24
Issue:
1
ISSN:
1471-2105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. We also demonstrate the generality of our tracking method on C. elegans fluorescent nuclei imagery. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on and the method is available as a service through the BisQue portal. 
    more » « less
  2. We present RigNet, an end-to-end automated method for producing animation rigs from input character models. Given an input 3D model representing an articulated character, RigNet predicts a skeleton that matches the animator expectations in joint placement and topology. It also estimates surface skin weights based on the predicted skeleton. Our method is based on a deep architecture that directly operates on the mesh representation without making assumptions on shape class and structure. The architecture is trained on a large and diverse collection of rigged models, including their mesh, skeletons and corresponding skin weights. Our evaluation is three-fold: we show better results than prior art when quantitatively compared to animator rigs; qualitatively we show that our rigs can be expressively posed and animated at multiple levels of detail; and finally, we evaluate the impact of various algorithm choices on our output rigs. 
    more » « less
  3. Abstract Tissue development and disease lead to changes in cellular organization, nuclear morphology, and gene expression, which can be jointly measured by spatial transcriptomic technologies. However, methods for jointly analyzing the different spatial data modalities in 3D are still lacking. We present a computational framework to integrate Spatial Transcriptomic data using over-parameterized graph-based Autoencoders with Chromatin Imaging data (STACI) to identify molecular and functional alterations in tissues. STACI incorporates multiple modalities in a single representation for downstream tasks, enables the prediction of spatial transcriptomic data from nuclear images in unseen tissue sections, and provides built-in batch correction of gene expression and tissue morphology through over-parameterization. We apply STACI to analyze the spatio-temporal progression of Alzheimer’s disease and identify the associated nuclear morphometric and coupled gene expression features. Collectively, we demonstrate the importance of characterizing disease progression by integrating multiple data modalities and its potential for the discovery of disease biomarkers. 
    more » « less
  4. We present a novel topology-preserving 3D medial axis computation framework based on volumetric restricted power diagram (RPD), while preserving the medial features and geometric convergence simultaneously, for both 3D CAD and organic shapes. The volumetric RPD discretizes the input 3D volume into sub-regions given a set of medial spheres. With this intermediate structure, we convert the homotopy equivalency between the generated medial mesh and the input 3D shape into a localized contractibility checking for each restricted element (power cell, power face, power edge), by checking their connected components and Euler characteristics. We further propose a fractional Euler characteristic algorithm for efficient GPU-based computation of Euler characteristic for each restricted element on the fly while computing the volumetric RPD. Compared with existing voxel-based or point-cloud-based methods, our approach is the first to adaptively and directly revise the medial mesh without globally modifying the dependent structure, such as voxel size or sampling density, while preserving its topology and medial features. In comparison with the feature preservation method MATFP [Wang et al. 2022], our method provides geometrically comparable results with fewer spheres and more robustly captures the topology of the input 3D shape. 
    more » « less
  5. We explore synthetic aperture radar (SAR) 3D imaging capabilities in the sub-THz band using a novel 110-260 GHz experimental testbed. We propose RADar Implicit SHapes (RADISH), a post-processing method that leverages the SAR’s millimeter-level imaging resolution to estimate an object’s 3D shape. RADISH first c onverts high-resolution SAR images to a detailed point cloud of a scanned object. The point cloud is then used to fit an implicit neural representation to the object’s surface by approximating the signed distance function of the scene. We experimentally validate RADISH’s ability to represent the salient geometric features of real-world 3D objects. 
    more » « less