skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing optimization approaches in the direct displacement-based design of tall mass timber lateral systems
Numerical analyses can aid design exploration, but there are several computational approaches available to consider design options. These range from “brute-force” search to optimization. However, the implementation of optimization can be challenging for the complex, time-intensive analyses required to assess seismic performance. In response to this challenge, this study tests several optimization strategies for the direct displacement-based design of a lateral force-resisting system (LFRS) using mass timber panels with U-shaped flexural plates (UFPs) and post-tensioning high-strength steel rods. The study compares two approaches: (1) a brute-force sampling of designs and data filtering to determine acceptable solutions, and (2) various automated optimization algorithms. The differential evolution algorithm was found to be the most efficient and robust approach, saving 90% of computational cost compared to brute-force sampling while producing comparable solutions. However, every optimization formulation did not return best range of design options, often requiring reformulation or hyperparameter tuning to ensure effectiveness.  more » « less
Award ID(s):
2120684
PAR ID:
10456049
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ASCE International Conference on Computing in Civil Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Numerical analyses can aid design exploration, but there are several computational approaches available to consider design options. These range from “brute-force” search to optimization. However, the implementation of optimization can be challenging for the complex, time-intensive analyses required to assess seismic performance. In response to this challenge, this study tests several optimization strategies for the direct displacement-based design of a lateral force-resisting system (LFRS) using mass timber panels with U-shaped flexural plates (UFPs) and post-tensioning high-strength steel rods. The study compares two approaches: (1) a brute-force sampling of designs and data filtering to determine acceptable solutions; and (2) various automated optimization algorithms. The differential evolution algorithm was found to be the most efficient and robust approach, saving 90% of computational cost compared to bruteforce sampling while producing comparable solutions. However, every optimization formulation did not return best range of design options, often requiring reformulation or hyperparameter tuning to ensure effectiveness. 
    more » « less
  2. According to a new design paradigm called Converging Design, high-level optimization objectives such as resilience and sustainability can be pursued through iterative simulation and feedback. Unlike traditional design processes that prioritize desirable seismic performance at various seismic hazard levels, the Converging Design methodology also considers the long-term ecological impact of construction and functional recovery. This methodology requires navigating competing priorities, which can be pursued through multiobjective optimization (MOO). However, computational costs and incorporating uncertainty in seismic analysis also demand that optimization frameworks use algorithms and analysis resolutions that are appropriate to the decisions being made as the design is refined. While such a framework could be applied to any material, mass timber systems are increasingly attractive as a potential sustainable solution for buildings. In this study, using a Python-based object-oriented program, an automated structural design procedure is developed to evaluate the seismic and sustainability performance of parametrically definable mass timber building configurations. Different geometric classes with Cross-Laminated Timber Rocking Walls are modeled using OpenSees and are automatically designed. Their behavior is then studied to provide insights into the relationship between structural variables and the optimization objectives. The results show a clear trade-off between Seismic Safety (the inverse of risk) and Global Warming Potential due to the construction of different design options, although the nature of this trade-off depends on the desired seismic behavior limit states. The developed software thus enables designers to efficiently explore a range of early design options for mass timber lateral systems and to achieve optimal solutions that balance seismic and sustainability performance. 
    more » « less
  3. According to a new design paradigm called Converging Design, high-level optimization objectives such as resilience and sustainability can be pursued through iterative simulation and feedback. Unlike traditional design processes that prioritize desirable seismic performance at various seismic hazard levels, the Converging Design methodology also considers the long-term ecological impact of construction and functional recovery. This methodology requires navigating competing priorities, which can be pursued through multi-objective optimization (MOO). However, computational costs and incorporating uncertainty in seismic analysis also demand that optimization frameworks use algorithms and analysis resolutions that are appropriate to the decisions being made as the design is refined. While such a framework could be applied to any material, mass timber systems are increasingly attractive as a potential sustainable solution for buildings. In this study, using a Python-based object-oriented program, an automated structural design procedure is developed to evaluate the seismic and sustainability performance of parametrically definable mass timber building configurations. Different geometric classes with Cross-Laminated Timber Rocking Walls are modeled using OpenSees and are automatically designed. Their behavior is then studied to provide insights into the relationship between structural variables and the optimization objectives. The results show a clear trade-off between Seismic Safety (the inverse of risk) and Global Warming Potential due to the construction of different design options, although the nature of this trade-off depends on the desired seismic behavior limit states. The developed software thus enables designers to efficiently explore a range of early design options for mass timber lateral systems and to achieve optimal solutions that balance seismic and sustainability performance. 
    more » « less
  4. ABSTRACT Improved energy performance and occupant comfort are driving building design decisions due to the increasing demand for sustainable and green buildings. However, despite the variety of technological developments in other fields, the range of solutions to improve building performance is limited. One of the main limitations for an early designer is a performance evaluation method to facilitate the design process. This paper offers a new shading performance optimization process that can help designers evaluate both daylighting and energy performance and generate optimized and flexible designs that can be further improved by implementing user-specific automation. The proposed performance optimization method utilizes parametric design, building simulation models, and Genetic Algorithms. Common shading design systems are explored through parametric design, and daylighting and energy modeling simulations are performed to evaluate shading device performance. Genetic Algorithms are used to identify design options with optimal energy and daylighting performance. A case study is conducted to verify the effectiveness of the overall process. Results are used to analyze the influence of design decisions among different shading designs. Finally, future directions in both shading design and energy optimization are presented. 
    more » « less
  5. Broad-scale modeling and optimization play a vital role in the design of advanced power converters. Optimization is normally implemented via brute force iterations of design variables or utilizing metaheuristic techniques which are time consuming for a wide range of potential topologies, device implementations, and operating points. Recently, discrete time state-space modeling has shown merits in rapid analysis and generality to arbitrary circuit topologies but has not yet been utilized under rapid optimization techniques across multiple converter parameters. In this work, we investigate methods to incorporate rapid gradient-based optimization techniques to leverage discrete time state-space modeling and showcase the approach in the power converter design process. The method is validated on a 48-to-1V converter designed using the proposed techniques. 
    more » « less