skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Power Converter and Discrete Device Optimization Utilizing Discrete Time State-Space Modeling
Broad-scale modeling and optimization play a vital role in the design of advanced power converters. Optimization is normally implemented via brute force iterations of design variables or utilizing metaheuristic techniques which are time consuming for a wide range of potential topologies, device implementations, and operating points. Recently, discrete time state-space modeling has shown merits in rapid analysis and generality to arbitrary circuit topologies but has not yet been utilized under rapid optimization techniques across multiple converter parameters. In this work, we investigate methods to incorporate rapid gradient-based optimization techniques to leverage discrete time state-space modeling and showcase the approach in the power converter design process. The method is validated on a 48-to-1V converter designed using the proposed techniques.  more » « less
Award ID(s):
1751878
PAR ID:
10510051
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE 24th Workshop on Control and Modeling for Power Electronics (COMPEL)
ISSN:
2151-1004
ISBN:
979-8-3503-1618-6
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Location:
Ann Arbor, MI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Schematic-level optimization and steady-state loss modeling play a vital role in the design of advanced power converters. Recently, discrete time state-space modeling has shown merits in rapid analysis and generality to arbitrary circuit topologies but has not yet been utilized under rapid optimization techniques. In this work, we investigate methods for the incorporation of rapid gradient-based optimization techniques leveraging discrete time state-space modeling and showcase the utility of the approach for use in the converter design process. 
    more » « less
  2. Modeling plays a vital role in the design of advanced power converters. Commonly, modeling is completed using either dedicated hand analysis, which must be completed individually for each topology, or time-stepping circuit simulations, which are insufficiently rapid for broad analysis considering a wide range of potential designs or operating points. Discrete time state-space modeling of switching converters has shown merits in rapid analysis and generality to arbitrary circuit topologies but is hampered by difficulty incorporating nonlinear elements. In this work, we investigate methods for the incorporation of nonlinear elements into a generalized discrete time state-space modeling framework and showcase the utility of the approach for use in the converter design process. 
    more » « less
  3. null (Ed.)
    Steady-state modeling plays an important role in the design of advanced power converters. Typically, steady-state modeling is completed by time-stepping simulators, which may be slow to converge to steady-state, or by dedicated analysis, which is time-consuming to develop across multiple topologies. Discrete time state-space modeling is a uniform approach to rapidly simulate arbitrary power converter designs. However, the approach requires modification to capture state-dependent switching, such as diode switching or current programmed modulation. This work provides a framework to identify and correct state-dependent switching within discrete time state-space modeling and shows the utility of the proposed method within the power converter design process. 
    more » « less
  4. Active rectifiers in wireless power transfer systems exhibit many benefits compared to diode rectifiers, including increased efficiency, controllable impedance, and regulation capability. To achieve these benefits, the receivers must synchronize their switching frequency to the transmitter to avoid sub-fundamental beat frequency oscillations. Without additional communication, the receiver must synchronize to locally-sensed signals, such as voltages and currents induced in the power stage by the transmitter. However, the waveforms in the receiver are dependent on both the transmitter and receiver operation, resulting in an internal feedback between sensing and synchronization which prohibits the use of traditional phase-locked-loop design techniques. In this digest, a discrete time state space model is developed and used to derive a small signal model of these interactions for the purpose of designing stable closed-loop synchronization control. A prototype 150 kHz wireless power transfer converter is used to experimentally validate the modeling, showcasing stable synchronization. 
    more » « less
  5. This paper compares three different dc-dc topologies, i.e. boost converter, three-level flying capacitor multilevel converter (FCMC) and one-cell switching tank converter (STC) for a 100 kW electric vehicle power electronic system. This bidirectional dc-dc converter targets 300 V - 600 V voltage conversion. Total semiconductor loss index (TSLI) has been proposed to evaluate topologies and device technologies. The boost converter and one-cell STC have been fairly compared by utilizing this index. The simulation results of a 100 kW one-cell STC working at zero current switching (ZCS) mode have been provided. A 100 kW hardware prototype using 1200 V 600 A SiC power module has been built. The estimated efficiency is about 99.2% at 30 kW, 99.13% at half load, and 98.64% at full load. The power density of the main circuits is about 42 kW/L 
    more » « less