skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 25, 2024

Title: Power Converter and Discrete Device Optimization Utilizing Discrete Time State-Space Modeling
Broad-scale modeling and optimization play a vital role in the design of advanced power converters. Optimization is normally implemented via brute force iterations of design variables or utilizing metaheuristic techniques which are time consuming for a wide range of potential topologies, device implementations, and operating points. Recently, discrete time state-space modeling has shown merits in rapid analysis and generality to arbitrary circuit topologies but has not yet been utilized under rapid optimization techniques across multiple converter parameters. In this work, we investigate methods to incorporate rapid gradient-based optimization techniques to leverage discrete time state-space modeling and showcase the approach in the power converter design process. The method is validated on a 48-to-1V converter designed using the proposed techniques.  more » « less
Award ID(s):
1751878
NSF-PAR ID:
10510051
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE 24th Workshop on Control and Modeling for Power Electronics (COMPEL)
ISSN:
2151-1004
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Location:
Ann Arbor, MI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Schematic-level optimization and steady-state loss modeling play a vital role in the design of advanced power converters. Recently, discrete time state-space modeling has shown merits in rapid analysis and generality to arbitrary circuit topologies but has not yet been utilized under rapid optimization techniques. In this work, we investigate methods for the incorporation of rapid gradient-based optimization techniques leveraging discrete time state-space modeling and showcase the utility of the approach for use in the converter design process. 
    more » « less
  2. Modeling plays a vital role in the design of advanced power converters. Commonly, modeling is completed using either dedicated hand analysis, which must be completed individually for each topology, or time-stepping circuit simulations, which are insufficiently rapid for broad analysis considering a wide range of potential designs or operating points. Discrete time state-space modeling of switching converters has shown merits in rapid analysis and generality to arbitrary circuit topologies but is hampered by difficulty incorporating nonlinear elements. In this work, we investigate methods for the incorporation of nonlinear elements into a generalized discrete time state-space modeling framework and showcase the utility of the approach for use in the converter design process. 
    more » « less
  3. null (Ed.)
    Steady-state modeling plays an important role in the design of advanced power converters. Typically, steady-state modeling is completed by time-stepping simulators, which may be slow to converge to steady-state, or by dedicated analysis, which is time-consuming to develop across multiple topologies. Discrete time state-space modeling is a uniform approach to rapidly simulate arbitrary power converter designs. However, the approach requires modification to capture state-dependent switching, such as diode switching or current programmed modulation. This work provides a framework to identify and correct state-dependent switching within discrete time state-space modeling and shows the utility of the proposed method within the power converter design process. 
    more » « less
  4. Active rectifiers in wireless power transfer systems exhibit many benefits compared to diode rectifiers, including increased efficiency, controllable impedance, and regulation capability. To achieve these benefits, the receivers must synchronize their switching frequency to the transmitter to avoid sub-fundamental beat frequency oscillations. Without additional communication, the receiver must synchronize to locally-sensed signals, such as voltages and currents induced in the power stage by the transmitter. However, the waveforms in the receiver are dependent on both the transmitter and receiver operation, resulting in an internal feedback between sensing and synchronization which prohibits the use of traditional phase-locked-loop design techniques. In this digest, a discrete time state space model is developed and used to derive a small signal model of these interactions for the purpose of designing stable closed-loop synchronization control. A prototype 150 kHz wireless power transfer converter is used to experimentally validate the modeling, showcasing stable synchronization. 
    more » « less
  5. Inference-based optimization via simulation, which substitutes Gaussian process (GP) learning for the structural properties exploited in mathematical programming, is a powerful paradigm that has been shown to be remarkably effective in problems of modest feasible-region size and decision-variable dimension. The limitation to “modest” problems is a result of the computational overhead and numerical challenges encountered in computing the GP conditional (posterior) distribution on each iteration. In this paper, we substantially expand the size of discrete-decision-variable optimization-via-simulation problems that can be attacked in this way by exploiting a particular GP—discrete Gaussian Markov random fields—and carefully tailored computational methods. The result is the rapid Gaussian Markov Improvement Algorithm (rGMIA), an algorithm that delivers both a global convergence guarantee and finite-sample optimality-gap inference for significantly larger problems. Between infrequent evaluations of the global conditional distribution, rGMIA applies the full power of GP learning to rapidly search smaller sets of promising feasible solutions that need not be spatially close. We carefully document the computational savings via complexity analysis and an extensive empirical study. Summary of Contribution: The broad topic of the paper is optimization via simulation, which means optimizing some performance measure of a system that may only be estimated by executing a stochastic, discrete-event simulation. Stochastic simulation is a core topic and method of operations research. The focus of this paper is on significantly speeding-up the computations underlying an existing method that is based on Gaussian process learning, where the underlying Gaussian process is a discrete Gaussian Markov Random Field. This speed-up is accomplished by employing smart computational linear algebra, state-of-the-art algorithms, and a careful divide-and-conquer evaluation strategy. Problems of significantly greater size than any other existing algorithm with similar guarantees can solve are solved as illustrations. 
    more » « less