skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Environmental and Climate History of the Roman Expansion in Italy
Abstract A first synthesis of available data for the period of Rome’s expansion in Italy (about 400–29 b.c.e.) shows the role of climate and environment in early Roman imperialism. Although global indices suggest a warmer phase with relatively few short-term climate events occuring around the same time as the expansion, local data emphasize the highly variable timing and expression of these trends. This variability casts doubt on ideas of a unitary, historically consequential “Roman Warm Period.” The historical importance of climate and environment to socioeconomic development merits emphasis, but should be understood in terms of evolving, contingent forms of resilience and risk-mitigating behavior by Italian communities during Roman expansion.  more » « less
Award ID(s):
1925417
PAR ID:
10456056
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
The Journal of Interdisciplinary History
Volume:
54
Issue:
1
ISSN:
0022-1953
Page Range / eLocation ID:
1 to 41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The assassination of Julius Caesar in 44 BCE triggered a power struggle that ultimately ended the Roman Republic and, eventually, the Ptolemaic Kingdom, leading to the rise of the Roman Empire. Climate proxies and written documents indicate that this struggle occurred during a period of unusually inclement weather, famine, and disease in the Mediterranean region; historians have previously speculated that a large volcanic eruption of unknown origin was the most likely cause. Here we show using well-dated volcanic fallout records in six Arctic ice cores that one of the largest volcanic eruptions of the past 2,500 y occurred in early 43 BCE, with distinct geochemistry of tephra deposited during the event identifying the Okmok volcano in Alaska as the source. Climate proxy records show that 43 and 42 BCE were among the coldest years of recent millennia in the Northern Hemisphere at the start of one of the coldest decades. Earth system modeling suggests that radiative forcing from this massive, high-latitude eruption led to pronounced changes in hydroclimate, including seasonal temperatures in specific Mediterranean regions as much as 7 °C below normal during the 2 y period following the eruption and unusually wet conditions. While it is difficult to establish direct causal linkages to thinly documented historical events, the wet and very cold conditions from this massive eruption on the opposite side of Earth probably resulted in crop failures, famine, and disease, exacerbating social unrest and contributing to political realignments throughout the Mediterranean region at this critical juncture of Western civilization. 
    more » « less
  2. Ancient biomolecules have become an increasingly important part of archaeological investigations interested in understanding population movements and health. Despite their ability to elucidate historically-attested contexts of human mobility and interaction between different cultural groups, biomolecular techniques are still underutilized in certain historical and archaeological contexts. One such context is the Roman Imperial limes, or border zone, along the lower reaches of the Danube, which saw more than five hundred years of migration, conflict, and accommodation among a wide range of populations, from Mediterranean settlers to steppe pastoralists. In this region, more than a century of archaeological investigation has unearthed the remains of tens of thousands of Roman-era individuals. However, only a limited number of contexts have undergone biomolecular analyses. While these deceased humans may offer an untapped reservoir of biomolecular information, many were collected during a period when the standard precautions and protocols for ancient biomolecular research were not yet established. Because contamination is a major barrier for successfully recovering ancient DNA and proteins, conducting a pilot study to assess bimolecular preservation of a small representative dataset of human remains before embarking on a more extensive research program may prevent unnecessary sampling. This study applies ancient DNA and paleoproteomic techniques to human remains from a Roman-period cemetery at Histria, a site located just south of the Danube at the edge of the Roman province of Moesia Inferior. The individuals from whom we sampled dentin and dental calculus were excavated between the 1940s and 1980s and were housed at the Francisc J. Rainer Institute since. Our results suggest that both microbial and human ancient DNA is preserved in the dental calculus and dentin samples. We also successfully recovered sex-specific amelogenin peptides in tooth enamel from three individuals, including a juvenile. In conclusion, our results are encouraging, signifying the feasibility of future aDNA and paleoproteomic research for this skeletal collection. Our analyses also showcase how sex estimation with genomic and proteomic methods may contradict traditional osteological approaches. These findings not only offer deeper insights into the lives of these individuals but also show promise for the investigation of broader anthropological questions, such as the impact of Roman annexation in this region. 
    more » « less
  3. ABSTRACT Short-period Galactic white dwarf binaries detectable by Laser Interferometer Space Antenna are the only guaranteed persistent sources for multimessenger gravitational-wave astronomy. Large-scale surveys in the 2020s present an opportunity to conduct preparatory science campaigns to maximize the science yield from future multimessenger targets. The Nancy Grace Roman Space Telescope Galactic Bulge Time-Domain Survey will (in its Reference Survey design) image seven fields in the Galactic Bulge approximately 40 000 times each. Although the Reference Survey cadence is optimized for detecting exoplanets via microlensing, it is also capable of detecting short-period white dwarf binaries. In this paper, we present forecasts for the number of detached short-period binaries the Roman Galactic Bulge Time-Domain Survey will discover and the implications for the design of electromagnetic surveys. Although population models are highly uncertain, we find a high probability that the baseline survey will detect of the order of ∼5 detached white dwarf binaries. The Reference Survey would also have a $${\gtrsim} 20\,{\rm per\,cent}$$ chance of detecting several known benchmark white dwarf binaries at the distance of the Galactic Bulge. 
    more » « less
  4. Abstract The TOTEM Roman pot detectors are used to reconstruct the transverse momentum of scattered protons and to estimate the transverse location of the primary interaction. This paper presents new methods of track reconstruction, measurements of strip-level detection efficiencies, cross-checks of the LHC beam optics, and detector alignment techniques, along with their application in the selection of signal collision events. The track reconstruction is performed by exploiting hit cluster information through a novel method using a common polygonal area in the intercept-slope plane. The technique is applied in the relative alignment of detector layers with μm precision. A tag-and-probe method is used to extract strip-level detection efficiencies. The alignment of the Roman pot system is performed through time-dependent adjustments, resulting in a position accuracy of 3 μm in the horizontal and 60 μm in the vertical directions. The goal is to provide an optimal reconstruction tool for central exclusive physics analyses based on the high-β* data-taking period at √(s) = 13 TeV in 2018. 
    more » « less
  5. Abstract Observations reveal Antarctic sea ice expansion and Southern Ocean surface cooling trends from 1979 to 2014, whereas climate models mostly simulate the opposite. Here I use historical ensemble simulations with multiple climate models to show that sea-ice natural variability enables the models to simulate an Antarctic sea ice expansion during this period under anthropogenic forcings. Along with sea-ice expansion, Southern Ocean surface and subsurface temperatures up to 50oS, as well as lower tropospheric temperatures between 60oS and 80oS, exhibit significant cooling trends, all of which are consistent with observations. Compared to the sea-ice decline scenario, Antarctic sea ice expansion brings tropical precipitation changes closer to observations. Neither the Southern Annular Mode nor the Interdecadal Pacific Oscillation can fully explain the simulated Antarctic sea ice expansion over 1979–2014, while the sea-ice expansion is closely linked to surface meridional winds associated with a zonal wave 3 pattern. 
    more » « less