Exploring robots may fail due to environmental hazards. Thus, robots need to account for the possibility of failure to plan the best exploration paths. Optimizing expected utility enables robots to find plans that balance achievable reward with the inherent risks of exploration. Moreover, when robots rendezvous and communicate to exchange observations, they increase the probability that at least one robot is able to return with the map. Optimal exploration is NP-hard, so we apply a constraint-based approach to enable highly-engineered solution techniques. We model exploration under the possibility of robot failure and communication constraints as an integer, linear program and a generalization of the Vehicle Routing Problem. Empirically, we show that for several scenarios, this formulation produces paths within 50% of a theoretical optimum and achieves twice as much reward as a baseline greedy approach.
more »
« less
Robot Team Data Collection with Anywhere Communication
Using robots to collect data is an effective way to obtain information from the environment and communicate it to a static base station. Furthermore, robots have the capability to communicate with one another, potentially decreasing the time for data to reach the base station. We present a Mixed Integer Linear Program that reasons about discrete routing choices, continuous robot paths, and their effect on the latency of the data collection task. We analyze our formulation, discuss optimization challenges inherent to the data collection problem, and propose a factored formulation that finds optimal answers more efficiently. Our work is able to find paths that reduce latency by up to 101% compared to treating all robots independently in our tested scenarios.
more »
« less
- Award ID(s):
- 1823245
- PAR ID:
- 10456067
- Date Published:
- Journal Name:
- Proceedings of the International Conference on Intelligent Robots and Systems
- ISSN:
- 2153-0866
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider a multiple access channel (MAC) problem where several users communicate with a base station and in which the users may have different applications or communication purposes for using the network, which is reflected via associated communication metrics. Specifically, we use throughput as the metric to reflect regular data transmission purposes, and latency, modeled by the inverse throughput, is used to reflect data transmission speed as another metric. The problem is formulated as a non-zero sum game. The equilibrium is derived in closed form. Stability in communication for such a heterogeneous network is established by proving the uniqueness of the equilibrium, except for particular cases where stability still can be maintained via cooperation of users with throughput metric or their switching to latency metric.more » « less
-
null (Ed.)Two nodes of a wireless network may not be able to communicate with each other directly, perhaps because of obstacles or insufficient signal strength. This necessitates the use of intermediate nodes to relay information. Often, one designates a (preferably small) subset of them to relay these messages (i.e., to serve as a virtual backbone for the wireless network), which can be seen as a connected dominating set (CDS) of the associated graph. Ideally, these communication paths should be short, leading to the notion of a latency-constrained CDS. In this paper, we point out several shortcomings of a previously studied formalization of a latency-constrained CDS and propose an alternative one. We introduce an integer programming formulation for the problem that has a variable for each node and imposes the latency constraints via an exponential number of cut-like inequalities. Two nice properties of this formulation are that (1) it applies when distances are hop-based and when they are weighted and (2) it easily generalizes to ensure fault tolerance. We provide a branch-and-cut implementation of this formulation and compare it with a new polynomial-size formulation. Computational experiments demonstrate the superiority of the cut-like formulation. We also study related questions from computational complexity, such as approximation hardness, and answer an open problem regarding the fault diameter of graphs.more » « less
-
null (Ed.)We focus on sensor networks that are deployed in challenging environments, wherein sensors do not always have connected paths to a base station, and propose a new data resilience problem. We refer to it as DRE2: data resiliency in extreme environments. As there are no connected paths between sensors and the base station, the goal of DRE2 is to maximize data resilience by preserving the overflow data inside the network for maximum amount of time, considering that sensor nodes have limited storage capacity and unreplenishable battery power. We propose a quadratic programming-based algorithm to solve DRE2 optimally. As quadratic programming is NP-hard thus not scalable, we design two time efficient heuristics based on different network metrics. We show via extensive experiments that all algorithms can achieve high data resilience, while a minimum cost flow-based is most energy-efficient. Our algorithms tolerate node failures and network partitions caused by energy depletion of sensor nodes. Underlying our algorithms are flow networks that generalize the edge capacity constraint well-accepted in traditional network flow theory.more » « less
-
null (Ed.)We focus on sensor networks that are deployed in challenging environments, wherein sensors do not always have connected paths to a base station, and propose a new data resilience problem. We refer to it as DRE2: data resiliency in extreme environments. As there are no connected paths between sensors and the base station, the goal of DRE2 is to maximize data resilience by preserving the overflow data inside the network for maximum amount of time, considering that sensor nodes have limited storage capacity and unreplenishable battery power. We propose a quadratic programming-based algorithm to solve DRE2 optimally. As quadratic programming is NP-hard thus not scalable, we design two time efficient heuristics based on different network metrics. We show via extensive experiments that all algorithms can achieve high data resilience, while a minimum cost flow-based is most energy-efficient. Our algorithms tolerate node failures and network partitions caused by energy depletion of sensor nodes. Underlying our algorithms are flow networks that generalize the edge capacity constraint well-accepted in traditional network flow theory.more » « less
An official website of the United States government

