Abstract Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.
more »
« less
Links to rare climates do not translate into distinct traits for island endemics
Abstract Current models of island biogeography treat endemic and non‐endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non‐endemic species and island ages. Endemics showed a link to climatically rare conditions that is consistent with island geological change through time. However, functional trait distinctiveness did not differ between endemics and non‐endemics and remained constant with island age. Thus, there is no obvious link between trait distinctiveness and occupancy of rare climates, at least for the traits measured here, suggesting that treating endemic and non‐endemic species as functionally equivalent in island biogeography is not fundamentally wrong.
more »
« less
- PAR ID:
- 10456070
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1461-023X
- Page Range / eLocation ID:
- 504 to 515
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Island mammals have influenced ecological and evolutionary theory since Darwin, and many of them provide textbook examples of the dramatic morphological evolution that often occurs in island communities. However, patterns of evolution in the climatic niches of island mammals have yet to be fully explored. Several hypotheses explaining niche divergence in island species have been introduced, linking niche evolution to increased competition among closely related or sympatric species, and as a by‐product of morphological evolution or geographical patterns. Here, we evaluate these hypotheses using closely related species pairs (sister taxa). We characterized the climatic niches of island endemic species and their closest relatives and calculated two metrics of niche divergence between the species (niche overlap and centroid distance). We compared these metrics between island endemics that have island‐dwelling sister taxa and those that have mainland‐dwelling sister taxa. We then related the degree of niche divergence to phylogenetic relatedness between the sister taxa, sympatry, morphological trait differences and island characteristics (isolation, size, age). Overall, despite significant niche divergence across species pairs, we found little evidence that competition or biotic interactions drive large‐scale climatic niche evolution in island mammals. Niche divergence in island‐endemic mammals is not driven by sympatry with their closest relatives, nor is it linked to phylogenetic relatedness. Furthermore, the phenotypic evolution of island‐endemic species does not lead to corresponding evolution in climatic niches. Instead, abiotic, geographical patterns appear to drive niche divergence in these species. Sister taxa that were more geographically isolated from each other had significantly lower niche overlaps. Island‐endemic mammals that live in montane regions likewise diverged from their closest relatives. These results suggest that competition between related species on islands may lead to niche partitioning only on local scales and that niche evolution in island‐endemic mammals may occur primarily in response to geographical patterns.more » « less
-
Endemic (small-ranged) species are distributed non-randomly across the globe. Regions of high topography and stable climates have higher endemism than flat, climatically unstable regions. However, it is unclear how these environmental conditions interact with and filter mammalian traits. Here, we characterize the functional traits of highly endemic mammalian assemblages in multiple ways, testing the hypothesis that these assemblages are trait-filtered (less functionally diverse) and dominated by species with traits associated with small range sizes. Compiling trait data for more than 5000 mammal species, we calculated assemblage means and multidimensional functional metrics to evaluate the distribution of traits across each assemblage. We then related these metrics to the endemism of global World Wildlife Fund ecoregions using linear models and phylogenetic fourth-corner regression. Highly endemic mammalian assemblages had small average body masses, low fecundity, short lifespans and specialized habitats. These traits relate to the stable climate and rough topography of endemism hotspots and to mammals' ability to expand their ranges, suggesting that the environmental conditions of endemism hotspots allowed their survival. Furthermore, species living in endemism hotspots clustered near the edges of their communities’ functional spaces, indicating that abiotic trait filtering and biotic interactions act in tandem to shape these communities.more » « less
-
Abstract Plant trait data are used to quantify how plants respond to environmental factors and can act as indicators of ecosystem function. Measured trait values are influenced by genetics, trade‐offs, competition, environmental conditions, and phenology. These interacting effects on traits are poorly characterized across taxa, and for many traits, measurement protocols are not standardized. As a result, ancillary information about growth and measurement conditions can be highly variable, requiring a flexible data structure. In 2007, the TRY initiative was founded as an integrated database of plant trait data, including ancillary attributes relevant to understanding and interpreting the trait values. The TRY database now integrates around 700 original and collective datasets and has become a central resource of plant trait data. These data are provided in a generic long‐table format, where a unique identifier links different trait records and ancillary data measured on the same entity. Due to the high number of trait records, plant taxa, and types of traits and ancillary data released from the TRY database, data preprocessing is necessary but not straightforward. Here, we present the ‘rtry’ R package, specifically designed to support plant trait data exploration and filtering. By integrating a subset of existing R functions essential for preprocessing, ‘rtry’ avoids the need for users to navigate the extensive R ecosystem and provides the functions under a consistent syntax. ‘rtry’ is therefore easy to use even for beginners in R. Notably, ‘rtry’ does not support data retrieval or analysis; rather, it focuses on the preprocessing tasks to optimize data quality. While ‘rtry’ primarily targets TRY data, its utility extends to data from other sources, such as the National Ecological Observatory Network (NEON). The ‘rtry’ package is available on the Comprehensive R Archive Network (CRAN;https://cran.r‐project.org/package=rtry) and the GitHub Wiki (https://github.com/MPI‐BGC‐Functional‐Biogeography/rtry/wiki) along with comprehensive documentation and vignettes describing detailed data preprocessing workflows.more » « less
-
Abstract Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.more » « less
An official website of the United States government

