skip to main content


Title: The ecological causes of functional distinctiveness in communities
Abstract

Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.

 
more » « less
Award ID(s):
2022810 2017949 1754250
NSF-PAR ID:
10423116
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;   « less
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
26
Issue:
8
ISSN:
1461-023X
Format(s):
Medium: X Size: p. 1452-1465
Size(s):
["p. 1452-1465"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Conservation planning and prioritization generally have focused on protecting taxa based on assessments of their long‐term persistence or on protecting habitats and sites with high species richness. An implicit assumption of these approaches is that species are equally different from each other. We propose metrics for conservation planning and prioritization that include consideration of differences among taxa in their functional characteristics to ensure long‐term maintenance of ecosystem functioning and services.

    Innovation

    We define metrics of functional distinctiveness, irregularity and singularity for a species. Functional distinctiveness is the mean distance in trait space of a species to all other species in a community. Functional irregularity is the variation in the proportional distances of a focal species to all other species based on a Hill function. Functional singularity is the product of those two metrics. These metrics can be weighted based on proportional abundance, biomass or frequency of occurrence. The metrics can be used to prioritize particular species for conservation based on their functional characteristics or to identify functionally distinct priority areas for conservation using the mean functional distinctiveness, irregularity and singularity of a set of species in an area. The metrics can be compared to the species richness of that area, thereby identifying areas that might have low species richness, but whose species are especially functionally distinct, providing important information of conservation relevance.

    Main conclusions

    Applying these metrics to data on the global distributions of parrots, we identified species that are not of current conservation concern because they are geographically widespread, but which might be prioritized due to their functional singularity (e.g., the scarlet macaw). We also identified areas that are species poor and not generally considered noteworthy for their parrot fauna, but that contain a fauna that is functionally singular (e.g., Chile). Together, these metrics broaden the criteria used for conservation prioritization.

     
    more » « less
  2. Abstract

    We commonly use trait variation to characterize plant function within and among species and understand how vegetation responds to the environment. Seedling emergence is an especially vulnerable window affecting population and community dynamics, yet trait‐based frameworks often bypass this earliest stage of plant life. Here we assess whether traits vary in ecologically meaningful ways when seedlings are just days old. How do shared evolutionary history and environmental conditions shape trait expression, and can traits explain which seedlings endure drought?

    We measured seedling traits in the first 4 days of life for 16 annual plant species under two water treatments, exploring trait trade‐offs, species‐level plasticity and the ability of traits to predict duration of survival under drought.

    Nearly half of traits showed the imprint of evolutionary history (i.e. significant phylogenetic signal), often reflecting differences between grasses and forbs, two groups separated by a deep evolutionary split. Water availability altered trait expression in most cases, though species‐level plastic responses also reflected evolutionary history.

    On average, new seedlings exhibited substantial trait variation structured as multiple trade‐offs like those found in mature plants. Some species invested in thick roots and shoots, whereas others invested in more efficient tissues. Separately, some invested in tougher roots and others in deeper roots. We also observed trade‐offs related to growth rates (fast or slow) and biomass allocation (above‐ or below‐ground). Drought survival time was correlated most strongly with seed mass, root construction and allocation traits, and phylogeny (grasses vs. forbs).

    Synthesis.Our results show that seed and seedling trait variation among annual species is substantial, and that a few attributes could capture major dimensions of ecological strategies during emergence. With seedling survival times ranging twofold among annuals (from 7.5 to 14.5 days), these strategies could mitigate recruitment responses to more frequent or longer dry spells. Multivariate trait and plasticity strategies should be further explored in studies designed to assess trait‐fitness linkages during recruitment.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    In many invaded grasslands, dominant exotic species can produce large amounts of litter that modify local abiotic conditions and species' interactions. These novel conditions can reduce native species abundance and promote the persistence of exotic species, yet the strength of this disparity may be influenced by how consumer pressure interacts with litter accumulation. Consumers may exacerbate this disparity by preferentially targeting native species or by promoting heterogeneity in microhabitats due to their movement and small‐scale ground disturbances that favours fast growing exotic species. How species respond to litter accumulation and consumer pressure may depend on either evolutionary differences, whereby exotics species may benefit from a lack natural predators, or by functional differences, in which species' physiological traits may confer fitness advantages to low‐light conditions or herbivory or granivory pressure.

    We examined the impact of litter presence and small mammal herbivory on the establishment and reproduction of functionally diverse exotic versus native species seeded across sites that naturally vary in resource availability in an annual invaded California grassland. We assessed whether seed mass and leaf nitrogen content (LNC) were predictive of successful establishment and reproduction.

    Litter accumulation affected exotic and native species differently, with litter significantly decreasing native recruitment and reproduction, while exotics were largely unaffected. Small mammals had a slight positive effect on the establishment of native species when litter was present but did not influence exotic species. Regardless of species provenance, larger seeded species established at a higher density while species with lower leaf nitrogen content had a higher density of reproductive individuals. Native species that successfully established and reproduced were functionally different in LNC than the resident community, while successful exotic species were functionally more similar to the resident community in LNC.

    Our study demonstrates that exotic species outperformed native species regardless of the presence of litter or herbivory pressure. Without the removal or thinning of litter, it is likely that exotic species will continue to dominate, resulting in positive feedback that further favours the persistence of exotic species within this invaded grassland system.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  4. Abstract

    Functional traits affect the demographic performance of individuals in their environment, leading to fitness differences that scale up to drive population dynamics and community assembly. Understanding the links between traits and fitness is, therefore, critical for predicting how populations and communities respond to environmental change. However, the net effects of traits on species fitness are largely unknown because we have lacked a framework for estimating fitness across multiple species and environments.

    We present a modelling framework that integrates trait effects on demographic performance over the life cycles of individuals to estimate the net effect of traits on species fitness. This approach involves (1) modelling trait effects on individual demographic rates (growth, survival and recruitment) as multidimensional performance surfaces that vary with individual size and environment and (2) integrating these effects into a population model to project population growth rates (i.e., fitness) as a function of traits and environment. We illustrate our approach by estimating performance surfaces and fitness landscapes for trees across a temperature gradient in the eastern United States.

    Functional traits (wood density, specific leaf area and maximum height) interacted with individual size and temperature to influence tree growth, survival and recruitment rates, generating demographic trade‐offs and shaping the contours of fitness landscapes. Tall tree species had high survival, growth and fitness across the temperature gradient. Wood density and specific leaf area had interactive effects on demographic performance, resulting in fitness landscapes with multiple peaks.

    With this approach it is now possible to empirically estimate the net effect of traits on fitness, leading to an improved understanding of the selective forces that drive community assembly and permitting generalizable predictions of population and community dynamics in changing environments.

     
    more » « less
  5. Abstract

    The effect of the environment on fitness in natural populations is a fundamental question in evolutionary biology. However, experimental manipulations of both environment and phenotype at the same time are rare. Thus, the relative importance of the competitive environment versus intrinsic organismal performance in shaping the location, height, and fluidity of fitness peaks and valleys remains largely unknown. Here, we experimentally tested the effect of competitor frequency on the complex fitness landscape driving adaptive radiation of a generalist and two trophic specialist pupfishes, a scale-eater and molluscivore, endemic to hypersaline lakes on San Salvador Island (SSI), Bahamas. We manipulated phenotypes, by generating 3407 F4/F5 lab-reared hybrids, and competitive environment, by altering the frequency of rare transgressive hybrids between field enclosures in two independent lake populations. We then tracked hybrid survival and growth rates across these four field enclosures for 3–11 months. In contrast to competitive speciation theory, we found no evidence that the frequency of hybrid phenotypes affected their survival. Instead, we observed a strikingly similar fitness landscape to a previous independent field experiment, each supporting multiple fitness peaks for generalist and molluscivore phenotypes and a large fitness valley isolating the divergent scale-eater phenotype. These features of the fitness landscape were stable across manipulated competitive environments, multivariate trait axes, and spatiotemporal heterogeneity. We suggest that absolute performance constraints and divergent gene regulatory networks shape macroevolutionary (interspecific) fitness landscapes in addition to microevolutionary (intraspecific) competitive dynamics. This interplay between organism and environment underlies static and dynamic features of the adaptive landscape.

     
    more » « less