skip to main content


Title: Facile Morphological Qualification of Transferred Graphene by Phase‐Shifting Interferometry
Abstract

Post‐growth graphene transfer to a variety of host substrates for circuitry fabrication has been among the most popular subjects since its successful development via chemical vapor deposition in the past decade. Fast and reliable evaluation tools for its morphological characteristics are essential for the development of defect‐free transfer protocols. The implementation of conventional techniques, such as Raman spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy in production quality control at an industrial scale is difficult because they are limited to local areas, are time consuming, and their operation is complex. However, through a one‐shot measurement within a few seconds, phase‐shifting interferometry (PSI) successfully scans ≈1 mm2of transferred graphene with a vertical resolution of ≈0.1 nm. This provides crucial morphological information, such as the surface roughness derived from polymer residues, the thickness of the graphene, and its adhesive strength with respect to the target substrates. Graphene samples transferred via four different methods are evaluated using PSI, Raman spectroscopy, and AFM. Although the thickness of the nanomaterials measured by PSI can be highly sensitive to their refractive indices, PSI is successfully demonstrated to be a powerful tool for investigating the morphological characteristics of the transferred graphene for industrial and research purposes.

 
more » « less
NSF-PAR ID:
10456161
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
38
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large area highly crystalline MoS2and WS2thin films were successfully grown on different substrates using radio-frequency magnetron sputtering technique. Structural, morphological and thermoelectric transport properties of MoS2,and WS2thin films have been investigated systematically to fabricate high-efficient thermal energy harvesting devices. X-ray diffraction data revealed that crystallites of MoS2and WS2films are highly oriented in 002 plane with uniform grain size distribution confirmed through atomic force microscopy study. Surface roughness increases with substrate temperature and it plays a big role in electron and phonon scattering. Interestingly, MoS2films also display low thermal conductivity at room temperature and strongly favors achievement of higher thermoelectric figure of merit value of up to 1.98. Raman spectroscopy data shows two distinct MoS2vibrational modes at 380 cm−1for E12gand 410 cm−1for A1g. Thermoelectric transport studies further demonstrated that MoS2films show p-type thermoelectric characteristics, while WS2is an n-type material. We demonstrated high efficient pn-junction thermoelectric generator device for waste heat recovery and cooling applications.

     
    more » « less
  2. Abstract

    A major challenge for graphene applications is the lack of mass production technology for large‐scale and high‐quality graphene growth and transfer. Here, a roll‐to‐roll (R2R) dry transfer process for large‐scale graphene grown by chemical vapor deposition is reported. The process is fast, controllable, and environmentally benign. It avoids chemical contamination and allows the reuse of graphene growth substrates. By controlling tension and speed of the R2R dry transfer process, the electrical sheet resistance is achieved as 9.5 kΩ sq−1, the lowest ever reported among R2R dry transferred graphene samples. The R2R dry transferred samples are used to fabricate graphene‐based field‐effect transistors (GFETs) on polymer. It is demonstrated that these flexible GFETs feature a near‐zero doping level and a gate leakage current one to two orders of magnitude lower than those fabricated using wet‐chemical etched graphene samples. The scalability and uniformity of the R2R dry transferred graphene is further demonstrated by successfully transferring a 3 × 3 in2sample and measuring its field‐effect mobility with 36 millimeter‐scaled GFETs evenly spaced on the sample. The field‐effect mobility of the R2R dry transferred graphene is determined to be 205 ± 36 cm2 V−1.

     
    more » « less
  3. As-grown graphene via chemical vapor deposition (CVD) has potential defects, cracks, and disordered grain boundaries induced by the synthesis and transfer process. Graphene/silver nanowire/graphene (Gr/AgNW/Gr) sandwich composite has been proposed to overcome these drawbacks significantly as the AgNW network can provide extra connections on graphene layers to enhance the stiffness and electrical conductivity. However, the existing substrate (polyethylene terephthalate (PET), glass, silicon, and so on) for composite production limits its application and mechanics behavior study. In this work, a vacuum annealing method is proposed and validated to synthesize the free-stand Gr/AgNW/Gr nanocomposite film on transmission electron microscopy (TEM) grids. AgNW average spacing, optical transmittance, and electrical conductivity are characterized and correlated with different AgNW concentrations. Atomic force microscope (AFM) indentation on the free-stand composite indicates that the AgNW network can increase the composite film stiffness by approximately 460% with the AgNW concentration higher than 0.6 mg/mL. Raman spectroscopy shows the existence of a graphene layer and the disturbance of the AgNW network. The proposed method provides a robust way to synthesize free-stand Gr/AgNW/Gr nanocomposite and the characterization results can be utilized to optimize the nanocomposite design for future applications. 
    more » « less
  4. Abstract

    Single‐crystalline inorganic semiconductor nanomembranes (NMs) have attracted great attention over the last decade, which poses great advantages to complex device integration. Applications in heterogeneous electronics and flexible electronics have been demonstrated with various semiconductor nanomembranes. Single‐crystalline aluminum nitride (AlN), as an ultrawide‐bandgap semiconductor with great potential in applications such as high‐power electronics has not been demonstrated in its NM forms. This very first report demonstrates the creation, transfer‐printing, and characteristics of the high‐quality single‐crystalline AlN NMs. This work successfully transfers the AlN NMs onto various foreign substrates. The crystalline quality of the NMs has been characterized by a broad range of techniques before and after the transfer‐printing and no degradation in crystal quality has been observed. Interestingly, a partial relaxation of the tensile stress has been observed when comparing the original as‐grown AlN epi and the transferred AlN NMs. In addition, the transferred AlN NMs exhibits the presence of piezoelectricity at the nanoscale, as confirmed by piezoelectric force microscopy. This work also comments on the advantages and the challenges of the approach. Potentially, the novel approach opens a viable path for the development of the AlN‐based heterogeneous integration and future novel electronics and optoelectronics.

     
    more » « less
  5. The electrical properties of graphene on dielectric substrates, such as silicon carbide (SiC), have received much attention due to their interesting applications. This work presents a method to grow graphene on a 6H-SiC substrate at a pressure of 35 Torr by using the hot filament chemical vapor deposition (HFCVD) technique. The graphene deposition was conducted in an atmosphere of methane and hydrogen at a temperature of 950 °C. The graphene films were analyzed using Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray, and X-ray photoelectron spectroscopy. Raman mapping and AFM measurements indicated that few-layer and multilayer graphene were deposited from the external carbon source depending on the growth parameter conditions. The compositional analysis confirmed the presence of graphene deposition on SiC substrates and the absence of any metal involved in the growth process. 
    more » « less