Phylogenetic and species‐based taxonomic descriptions of community structure may provide complementary information about the mechanisms driving community assembly across different environments. Environmental filtering may have similar effects on taxonomic and phylogenetic diversity under the assumption of niche conservatism, whereas competitive exclusion could produce contrasting patterns in these diversity metrics. In grassland restorations, these diversity patterns might then reveal potential assembly mechanisms underlying the impacts of restoration and management conditions on community structure. We compared plant community structure (alpha diversity, composition, and within‐site beta diversity) from both phylogenetic and taxonomic perspectives. Using surveys from 120 tallgrass prairie restorations in four regions of the Midwestern United States, we examined the effects of four potential drivers or environmental gradients: precipitation in the first year of restoration, seed mix richness, time since last prescribed fire, and restoration age, and included soil conditions as a covariate. First‐year precipitation influenced taxonomic community structure, but had weak effects on phylogenetic diversity and composition. Similarly, greater seed mix richness increased taxonomic diversity but did not influence phylogenetic diversity. Taxonomic, but not phylogenetic, diversity generally was lower in older restorations and those with a longer time since the last prescribed fire. These drivers consistently explained more variation in taxonomic than phylogenetic diversity and composition, perhaps in part because species turnover was largely among related species, producing weak impacts on phylogenetic community measures. An impact of precipitation on taxonomic but not phylogenetic diversity suggests that there may not be large differences in drought tolerance among clades that would cause phylogenetic patterns to arise from this environmental filter. Declining taxonomic diversity but not phylogenetic diversity is consistent with competitive exclusion as an assembly mechanism when competition is strongest between related species.
Though substantial effort has gone into predicting how global climate change will impact biodiversity patterns, the scarcity of taxon‐specific information has hampered the efficacy of these endeavors. Further, most studies analyzing spatiotemporal patterns of biodiversity focus narrowly on species richness. We apply machine learning approaches to a comprehensive vascular plant database for the United States and generate predictive models of regional plant taxonomic and phylogenetic diversity in response to a wide range of environmental variables. We demonstrate differences in predicted patterns and potential drivers of native vs nonnative biodiversity. In particular, native phylogenetic diversity is likely to decrease over the next half century despite increases in species richness. We also identify that patterns of taxonomic diversity can be incongruent with those of phylogenetic diversity. The combination of macro‐environmental factors that determine diversity likely varies at continental scales; thus, as climate change alters the combinations of these factors across the landscape, the collective effect on regional diversity will also vary. Our study represents one of the most comprehensive examinations of plant diversity patterns to date and demonstrates that our ability to predict future diversity may benefit tremendously from the application of machine learning.
- NSF-PAR ID:
- 10456219
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 227
- Issue:
- 5
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 1544-1556
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Synthesis . This research shows how studying taxonomic and phylogenetic diversity of ecosystem restorations can inform plant community ecology and help natural resource managers better predict the outcomes of restoration actions and management. -
Abstract The prediction that higher biodiversity leads to denser niche packing and thus higher community resistance to invasion has long been studied, with species richness as the predominant measure of diversity. However, few studies have explored how phylogenetic and functional diversity, which should represent niche space more faithfully than taxonomic diversity, influence community invasibility, especially across longer time frames and over larger spatial extents.
We used a 15‐year, 150‐site grassland dataset to assess relationships between invasive plant abundance and phylogenetic, functional and taxonomic diversity of recipient native plant communities. We analysed the dataset both pooled across all surveys and longitudinally, leveraging time‐series data to compare observed patterns in invasion with those predicted by two community assembly processes: biotic resistance and competitive exclusion. We expected more phylogenetically and functionally diverse communities to exhibit greater resistance to invasion.
With the pooled dataset, we found support for the long‐standing observation that communities with more native species have lower abundance of invasive species, and a more novel finding that more phylogenetically diverse communities had higher abundance of invasive species. We found no influence of aggregate (multivariate) functional diversity on invasion, but assemblages with taller plants, lower variability in plant height and lower seed mass were less invaded. Viewed longitudinally, the phylogenetic diversity relationship was reversed: the most phylogenetically diverse communities were most resistant to invasion. This apparent discrepancy suggests invasion dynamics are influenced by both site attributes and biotic resistance and emphasizes the value in studying invasion across time.
Synthesis . Our results provide insight into the nuances of the diversity–invasibility relationship: invasion dynamics differed for different dimensions of diversity and depending on whether the relationship was evaluated longitudinally. Our findings highlight the limitations of using single time‐point ‘snapshots’ of community composition to infer invasion mechanisms. -
The harsh geophysical template characterized by the urban environment combined with people’s choices has led ecologists to invoke environmental filtering as the main ecological phenomena explaining urban biodiversity patterns. Yet, dispersal is often overlooked as a driving factor, especially on expanding vacant land. Does overcoming dispersal limitation by seeding native species in urban environments and increasing the functional or phylogenetic diversity of the seeding pool increase native plant species diversity and abundance in urban vacant land? We took an experimental approach to learn how different dimensions of plant biodiversity within an augmented regional species pool, via seed additions, can explain variation in community structure over a 3-year period. Vacant lots were cleared and manipulated with seeding treatments of high or low phylogenetic and functional diversities from a pool of 28 native species. Establishment success, total native cover and native species richness were followed and compared to cleared, unseeded control lots as well as un-manipulated lots. Seeding increased native plant abundance and richness over uncleared plots, as well as cleared and unseeded control plots. Phylogenetically diverse seed mixtures had greater establishment success than mixtures composed of closely related species. Diversifying seed mixtures increased the likelihood of including species that are better able to establish on vacant land. However, there were no differences in varying levels of either functional or phylogenetic diversity. Augmenting the regional species pool via diverse seed mixtures can enhance native plant cover and richness under the harsh environmental conditions conferred by land abandonment.more » « less
-
Abstract Understanding how abiotic disturbance and biotic interactions determine pollinator and flowering‐plant diversity is critically important given global climate change and widespread pollinator declines. To predict responses of pollinators and flowering‐plant communities to changes in wildfire disturbance, a mechanistic understanding of how these two trophic levels respond to wildfire severity is needed.
We compared site‐to‐site variation in community composition (
β ‐diversity), species richness and abundances of pollinators and flowering plants among landscapes with no recent wildfire (unburned), mixed‐severity wildfire and high‐severity wildfire in three sites across the Northern Rockies Ecoregion, USA. We used variation partitioning to assess the relative contributions of wildfire, other abiotic variables (climate, soils and topography) and biotic associations among plant and pollinator composition to community assembly of both trophic levels.Wildfire disturbance generally increased species richness and total abundance, but decreased
β ‐diversity, of both pollinators and flowering plants. However, reductions inβ ‐diversity from wildfire appeared to result from increased abundances following fires, resulting in higher local species richness of pollinators and flowers in burned than unburned landscapes. After accounting for differences in abundance, standardized effect sizes ofβ ‐diversity were higher in burned than unburned landscapes, suggesting that wildfire enhances non‐random assortment of pollinator and flowering‐plant species among local communities.Wildfire disturbance mediated the relative importance of mutualistic associations to
β ‐diversity of pollinators and flowering plants. The influence of pollinatorβ ‐diversity on flowering‐plantβ ‐diversity increased with wildfire severity, whereas the influence of flowering‐plantβ ‐diversity on pollinatorβ ‐diversity was greater in mixed‐severity than high‐severity wildfire or unburned landscapes. Moreover, biotic associations among pollinator and plant species explained substantial variation inβ ‐diversity of both trophic levels beyond what could be explained by wildfire and all other abiotic and spatial factors combined.Synthesis . Wildfire disturbance and plant–pollinator interactions both strongly influenced the assembly of pollinator and flowering‐plant communities at local and regional scales. However, biotic interactions were generally more important drivers of community assembly in disturbed than undisturbed landscapes. As wildfire regimes continue to change globally, predicting its effects on biodiversity will require a deeper understanding of the ecological processes that mediate biotic interactions among linked trophic levels. -
Abstract Theory predicts that trophic specialization (i.e. low dietary diversity) should make consumer populations sensitive to environmental disturbances. Yet diagnosing specialization is complicated both by the difficulty of precisely quantifying diet composition and by definitional ambiguity: what makes a diet ‘diverse’?
We sought to characterize the relationship between taxonomic dietary diversity (TDD) and phylogenetic dietary diversity (PDD) in a species‐rich community of large mammalian herbivores in a semi‐arid East African savanna. We hypothesized that TDD and PDD would be positively correlated within and among species, because taxonomically diverse diets are likely to include plants from many lineages.
By using DNA metabarcoding to analyse 1,281 faecal samples collected across multiple seasons, we compiled high‐resolution diet profiles for 25 sympatric large‐herbivore species. For each of these populations, we calculated TDD and PDD with reference to a DNA reference library for local plants.
Contrary to our hypothesis, measures of TDD and PDD were either uncorrelated or negatively correlated with each other. Thus, these metrics reflect distinct dimensions of dietary specialization both within and among species. In general, grazers and ruminants exhibited greater TDD, but lower PDD, than did browsers and non‐ruminants. We found significant seasonal variation in TDD and/or PDD for all but four species (Grevy's zebra, buffalo, elephant, Grant's gazelle); however, the relationship between TDD and PDD was consistent across seasons for all but one of the 12 best‐sampled species (plains zebra).
Our results show that taxonomic generalists can be phylogenetic specialists, and vice versa. These two dimensions of dietary diversity suggest contrasting implications for efforts to predict how consumers will respond to climate change and other environmental perturbations. For example, populations with low TDD may be sensitive to phylogenetically ‘random’ losses of food species, whereas populations with low PDD may be comparatively more sensitive to environmental changes that disadvantage entire plant lineages—and populations with low dietary diversity in both taxonomic and phylogenetic dimensions may be most vulnerable of all.