skip to main content


Search for: All records

Award ID contains: 1902064

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Species interactions drive ecosystem processes and are a major focus of global change research. Among the most consequential interactions expected to shift with climate change are those between insect herbivores and plants, both of which are highly sensitive to temperature. Insect herbivores and their host plants display varying levels of synchrony that could be disrupted or enhanced by climate change, yet empirical data on changes in synchrony are lacking. Using evidence of herbivory on herbarium specimens collected from the northeastern United States and France from 1900 to 2015, we provide evidence that plant species with temperature‐sensitive phenologies experience higher levels of insect damage in warmer years, while less temperature‐sensitive, co‐occurring species do not. While herbivory might be mediated by interactions between warming and phenology through multiple pathways, we suggest that warming might lengthen growing seasons for phenologically sensitive plant species, exposing their leaves to herbivores for longer periods of time in warm years. We propose that elevated herbivory in warm years may represent a previously underappreciated cost to phenological tracking of climate change over longer timescales.

     
    more » « less
  2. Summary

    Though substantial effort has gone into predicting how global climate change will impact biodiversity patterns, the scarcity of taxon‐specific information has hampered the efficacy of these endeavors. Further, most studies analyzing spatiotemporal patterns of biodiversity focus narrowly on species richness.

    We apply machine learning approaches to a comprehensive vascular plant database for the United States and generate predictive models of regional plant taxonomic and phylogenetic diversity in response to a wide range of environmental variables.

    We demonstrate differences in predicted patterns and potential drivers of native vs nonnative biodiversity. In particular, native phylogenetic diversity is likely to decrease over the next half century despite increases in species richness. We also identify that patterns of taxonomic diversity can be incongruent with those of phylogenetic diversity.

    The combination of macro‐environmental factors that determine diversity likely varies at continental scales; thus, as climate change alters the combinations of these factors across the landscape, the collective effect on regional diversity will also vary. Our study represents one of the most comprehensive examinations of plant diversity patterns to date and demonstrates that our ability to predict future diversity may benefit tremendously from the application of machine learning.

     
    more » « less
  3. Free, publicly-accessible full text available June 1, 2024
  4. Abstract Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth. 
    more » « less
  5. Abstract Natural history collections (NHCs) are the foundation of historical baselines for assessing anthropogenic impacts on biodiversity. Along these lines, the online mobilization of specimens via digitization—the conversion of specimen data into accessible digital content—has greatly expanded the use of NHC collections across a diversity of disciplines. We broaden the current vision of digitization (Digitization 1.0)—whereby specimens are digitized within NHCs—to include new approaches that rely on digitized products rather than the physical specimen (Digitization 2.0). Digitization 2.0 builds on the data, workflows, and infrastructure produced by Digitization 1.0 to create digital-only workflows that facilitate digitization, curation, and data links, thus returning value to physical specimens by creating new layers of annotation, empowering a global community, and developing automated approaches to advance biodiversity discovery and conservation. These efforts will transform large-scale biodiversity assessments to address fundamental questions including those pertaining to critical issues of global change. 
    more » « less