skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Quiet‐Time Day‐to‐Day Variability of Equatorial Vertical E × B Drift From Atmosphere Perturbations at Dawn
Abstract Ionospheric day‐to‐day variability is ubiquitous, even under undisturbed geomagnetic and solar conditions. In this paper, quiet‐time day‐to‐day variability of equatorial vertical E × B drift is investigated using observations from ROCSAT‐1 satellite and the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCM‐X) v2.1 simulations. Both observations and model simulations illustrate that the day‐to‐day variability reaches the maximum at dawn, and the variability of dawn drift is largest around June solstice at ~90–180°W. However, there are significant challenges to reproduce the observed magnitude of the variability and the longitude distributions at other seasons. Using a standalone electro‐dynamo model, we find that the day‐to‐day variability of neutral winds in the E‐region (≤~130 km) is the primary driver of the day‐to‐day variability of dawn drift. Ionospheric conductivity modulates the drift variability responses to the E‐region wind variability, thereby determining its strength as well as its seasonal and longitudinal variations. Further, the day‐to‐day variability of dawn drift induced by individual tidal components of winds in June are examined: DW1, SW2, D0, and SW1 are the most important contributors.  more » « less
Award ID(s):
1753214
PAR ID:
10456236
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
4
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ionospheric day‐to‐day variability is essential for understanding the space environment, while it is still challenging to properly quantify and forecast. In the present work, the day‐to‐day variability of F2 layer peak electron densities (NmF2) is examined from both observational and modeling perspectives. Ionosonde data over Wuhan station (30.5°N, 114.5°E; 19.3°N magnetic latitude) are compared with simulations from the specific dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD‐WACCM‐X) and the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) in 2009 and 2012. Both SD‐WACCM‐X and TIEGCM are driven by the realistic 3 h geomagnetic index and daily solar input, and the former includes self‐consistently solved physics and chemistry in the lower atmosphere. The correlation coefficient between observations and SD‐WACCM‐X simulations is much larger than that of the TIEGCM simulations, especially during dusk in 2009 and nighttime in 2012. Both the observed and SD‐WACCM‐X simulated day‐to‐day variability of NmF2 reveal a similar day‐night dependence in 2012 that increases large during the nighttime and decreases during the daytime, and shows favorable consistency of daytime variability in 2009. Both the observations and SD‐WACCM‐X simulations also display semiannual variations in nighttime NmF2 variability, although the month with maximum variability is slightly different. However, TIEGCM does not reproduce the day‐night dependence or the semiannual variations well. The results emphasize the necessity for realistic lower atmospheric perturbations to characterize ionospheric day‐to‐day variability. This work also provides a validation of the SD‐WACCM‐X in terms of ionospheric day‐to‐day variability. 
    more » « less
  2. Abstract The statistics of day‐to‐day tidal variability within 35‐day running mean windows is obtained from Michelson Interferometer for Global High‐Resolution Thermospheric Imaging (MIGHTI)/Ionospheric Connection Explorer (ICON) observations in the 90–107 km height region for the year 2020. Temperature standard deviations for 18 diurnal and semidiurnal tidal components, and for four quasi‐stationary planetary waves are presented, as function of latitude, altitude, and day‐of‐year. Our results show that the day‐to‐day variability (DTDV) can be as large as 70% of the monthly mean amplitudes, thus providing a significant source of variability for the ionospheric E‐region dynamo and hence for the F‐region plasma. We further validate our results with COSMIC‐2 ionospheric observations and present an approach to extend the MIGHTI/ICON results to all latitudes using Hough Mode Extension fitting, to produce global tidal fields and their statistical DTDV that are suitable as lower boundary conditions for nudging and ensemble modeling of TIE‐GCM. In the future, this will likely help to establish a data‐driven perspective of space weather variability caused by the tidal weather of the lower atmosphere. 
    more » « less
  3. Abstract The semidiurnal tidal spectrum in the F‐region ionosphere obtained from hourly COSMIC‐2 Global Ionospheric Specification (GIS) data assimilation is greatly (>50%) enhanced during the January 2021 Sudden Stratospheric Warming (SSW). Moreover, the semidiurnal migrating tidal response in topside electron densities closely follows the day‐to‐day changes of the 10 hPa, 60°N zonal wind from MERRA‐2 during the SSW. The response is similar in the northern and southern crests of the Equatorial Ionization Anomaly (EIA) but persists toward higher magnetic latitudes and the EIA trough. A slight phase shift toward earlier local times is consistent with theoretical expectations of an E‐region dynamo driving and agrees with semidiurnal tidal diagnostics of MIGHTI/ICON zonal winds at 105 km. COSMIC‐2 GIS are the first data set to resolve the tidal weather of the ionosphere on a day‐to‐day basis and, therefore, provide a new perspective on space weather variability driven by lower and middle atmosphere dynamics. 
    more » « less
  4. Abstract Interplanetary (IP) shock‐driven sudden compression of the Earth's magnetosphere produces electromagnetic disturbances in the polar ionosphere. Several studies have examined the effects of IP shock on magnetosphere‐ionosphere coupling systems using all‐sky cameras and radars. In this study, we examine responses and drivers of the polar ionosphere following an IP shock compression on 16 June 2012. We observe the vertical drift and concurrent horizontal motion of the plasma. Observations from digisonde located at Antarctic Zhongshan station (ZHO) showed an ionospheric thickEregion ionization and associated vertical downward plasma motion atFregion. In addition, horizontal ionospheric convection reversals were observed on the Super Dual Auroral Radar Network ZHO and McMurdo radar observations. Findings suggest that the transient convective reversal breaks the original shear equilibrium, it is expected that the IP shock‐induced electric field triggers an enhanced velocity shear mapping to theEregion. The horizontal motion of the plasma was attributed to only the dusk‐to‐dawn electric field that existed during the preliminary phase of sudden impulse. We also found that ionospheric convection reversals were driven by a downward field‐aligned current. The results of these observations reveal, for the first time, the immediate and direct cusp ionosphere response to the IP shock, which is critical for understanding the global response of the magnetosphere following an abrupt change in Interplanetory Magnetic Field (IMF) and solar wind conditions. 
    more » « less
  5. Abstract This study develops a new Bubble Index to quantify the intensity of 2‐D postsunset equatorial plasma bubbles (EPBs) in the American/Atlantic sector, using Global‐scale Observations of the Limb and Disk (GOLD) nighttime data. A climatology and day‐to‐day variability analysis of EPBs is conducted based on the newly‐derived Bubble Index with the following results: (a) EPBs show considerable seasonal and solar activity dependence, with stronger (weaker) intensity around December (June) solstice and high (low) solar activity years. (b) EPBs exhibit opposite geomagnetic activity dependencies during different storm phases: EPBs are intensified concurrently with an increasing Kp, but are suppressed with high Kp occurring 3–6 hr earlier. (c) For the first time, we found that EPBs' day‐to‐day variation exhibited quasi‐3‐day and quasi‐6‐day periods. A coordinated analysis of Ionospheric Connection Explorer (ICON) winds and ionosonde data suggests that this multi‐day periodicity was related to the planetary wave modulation through the wind‐driven dynamo. 
    more » « less