skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid dynamical systems with hybrid inputs: Definition of solutions and applications to interconnections
Summary In this paper, we define solutions for hybrid systems with prespecified hybrid inputs. Unlike previous work where solutions and inputs are assumed to be defined on the same domain a priori, we consider the case where intervals of flow and jump times of the input are not necessarily synchronized with those of the state trajectory. This happens in particular when the input is the output of another hybrid system, for instance, in the context of observer design or reference tracking. The proposed approach relies on reparametrizing the jumps of the input in order to write it on a common domain. The solutions then consist of a pair made of the state trajectory and the reparametrized input. Our definition generalizes the notions of solutions of continuous‐time and discrete‐time systems with inputs. We provide an algorithm that automatically performs the construction of solutions for a given hybrid input. In the context of hybrid interconnections, we show how the solutions of the individual systems can be linked to the solutions of a closed‐loop system. Example illustrate the notions and the proposed algorithm.  more » « less
Award ID(s):
1710621
PAR ID:
10456261
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Robust and Nonlinear Control
Volume:
30
Issue:
15
ISSN:
1049-8923
Page Range / eLocation ID:
p. 5892-5916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. M. Grimble (Ed.)
    Summary This paper presents the first model reference adaptive control system for nonlinear, time‐varying, hybrid dynamical plants affected by matched and parametric uncertainties, whose resetting events are unknown functions of time and the plant's state. In addition to a control law and an adaptive law, which resemble those of the classical model reference adaptive control framework for continuous‐time dynamical systems, the proposed framework allows imposing instantaneous variations in the reference model's trajectory to rapidly steer the trajectory tracking error to zero, while retaining the closed‐loop system's ability to follow a user‐defined signal. These results are enabled by the first extension of the classical LaSalle–Yoshizawa theorem to time‐varying hybrid dynamical systems, which is presented in this paper as well. A numerical simulation shows the key features of the proposed adaptive control system and highlights its ability to reduce both the control effort and the trajectory tracking error over a classical model reference adaptive control system applied to the same problem. 
    more » « less
  2. This paper focuses on the motion planning problem for the systems exhibiting both continuous and discrete behaviors, which we refer to as hybrid dynamical systems. First, the motion planning problem for hybrid systems is formulated using the hybrid equation framework, which is general to capture most hybrid systems. Second, a propagation algorithm template is proposed that describes a general framework to solve the motion planning problem for hybrid systems. Third, a rapidly-exploring random trees (RRT) implementation of the proposed algorithm template is designed to solve the motion planning problem for hybrid systems. At each iteration, the proposed algorithm, called HyRRT, randomly picks a state sample and extends the search tree by flow or jump, which is also chosen randomly when both regimes are possible. Through a definition of concatenation of functions defined on hybrid time domains, we show that HyRRT is probabilistically complete, namely, the probability of failing to find a motion plan approaches zero as the number of iterations of the algorithm increases. This property is guaranteed under mild conditions on the data defining the motion plan, which include a relaxation of the usual positive clearance assumption imposed in the literature of classical systems. The motion plan is computed through the solution of two optimization problems, one associated with the flow and the other with the jumps of the system. The proposed algorithm is applied to an actuated bouncing ball system and a walking robot system so as to highlight its generality and computational features. 
    more » « less
  3. We model a three-link fully actuated biped as a hybrid system and propose a prediction-based control algorithm for global tracking of reference trajectories. The proposed control strategy consists of a reference system that generates the desired periodic gait, a virtual system that generates a suitable reference trajectory using prediction, and a tracking control law that steers the biped to the virtual trajectory. The proposed algorithms achieves, in finite time, tracking in two steps. We present mathematical properties that define the main elements in the hybrid predictive controller for achieving convergence to the reference within the first two steps. The results are validated through numerical simulations. 
    more » « less
  4. null (Ed.)
    Hybrid-electric aircraft represent an important step in the transition from conventional fuel-based propulsion to fully-electric aircraft. For hybrid power systems, overall aircraft performance and efficiency highly depend on the coordination of the fuel and electrical systems and the ability to effectively control state and input trajectories at the limits of safe operation. In such a safety-critical application, the chosen control strategy must ensure the closed-loop system adheres to these operational limits. While hierarchical Model Predictive Control (MPC) has proven to be a computationally efficient approach to coordinated control of complex systems across multiple timescales, most formulations are not supported by theoretical guarantees of actuator and state constraint satisfaction. To provide guaranteed constraint satisfaction, this paper presents set-based hierarchical MPC of a 16 state hybrid-electric aircraft power system. Within the proposed two-level vertical hierarchy, the long-term control decisions of the upper-level controller and the short-term control decisions of the lower-level controller are coordinated through the use of waysets. Simulation results show the benefits of this coordination in the context of hybrid-electric aircraft performance and demonstrate the practicality of applying set-based hierarchical MPC to complex multi-timescale systems. 
    more » « less
  5. AIAA (Ed.)
    In this paper, a novel model reference adaptive control (MRAC) architecture for nonlinear, time-varying, hybrid dynamical systems is applied for the first time to design the control system of a multi-rotor unmanned aerial vehicle (UAV). The proposed control system is specifically designed to address problems of practical interests involving autonomous UAVs transporting unknown, unsteady payloads and subject to instantaneous variations both in their state and in their dynamics. These variations can be due, for instance, to the payload’s dynamics, impacts between the payload and its casing, and sudden payload dropping and pickup. The proposed hybrid MRAC architecture improves the UAV’s trajectory tracking performance over classical MRAC also in the presence of motor failures. The applicability of the proposed framework is validated numerically through the first use of the high-fidelity simulation environment PyChrono for autonomous UAV control system testing. 
    more » « less