skip to main content


Title: Holistically Engineered Polymer–Polymer and Polymer–Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for High‐Performance Triboelectric Devices in Self‐Powered Wearable Cardiovascular Monitorings
Abstract

The capability of sensor systems to efficiently scavenge their operational power from stray, weak environmental energies through sustainable pathways could enable viable schemes for self‐powered health diagnostics and therapeutics. Triboelectric nanogenerators (TENG) can effectively transform the otherwise wasted environmental, mechanical energy into electrical power. Recent advances in TENGs have resulted in a significant boost in output performance. However, obstacles hindering the development of efficient triboelectric devices based on biocompatible materials continue to prevail. Being one of the most widely used polymers for biomedical applications, polyvinyl alcohol (PVA) presents exciting opportunities for biocompatible, wearable TENGs. Here, the holistic engineering and systematic characterization of the impact of molecular and ionic fillers on PVA blends’ triboelectric performance is presented for the first time. Triboelectric devices built with optimized PVA‐gelatin composite films exhibit stable and robust triboelectricity outputs. Such wearable devices can detect the imperceptible skin deformation induced by the human pulse and capture the cardiovascular information encoded in the pulse signals with high fidelity. The gained fundamental understanding and demonstrated capabilities enable the rational design and holistic engineering of novel materials for more capable biocompatible triboelectric devices that can continuously monitor vital physiological signals for self‐powered health diagnostics and therapeutics.

 
more » « less
NSF-PAR ID:
10456338
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
32
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deformable energy devices capable of efficiently scavenging ubiquitous mechanical signals enable the realization of self-powered wearable electronic systems for emerging human-integrated technologies. Triboelectric nanogenerators (TENGs) utilizing soft polymers with embedded additives and engineered dielectric properties emerge as ideal candidates for such applications. However, the use of solid filler materials in the state-of-the-art TENGs limits the devices' mechanical deformability and long-term durability. The current structural design for TENGs faces the dilemma where the enhanced dielectric constant of the TENG's contact layer leads to an undesirable saturation of the surface charge density. Here, we present a novel scheme to address the above issues, by exploring a liquid-metal-inclusion based TENG (LMI-TENG) where inherently deformable core–shell LMIs are incorporated into wearable high-dielectric-constant polymers. Through a holistic approach integrating theoretical and experimental efforts, we identified the parameter space for designing an LMI-TENG with co-optimized output and mechanical deformability. As a proof of concept, we demonstrated an LMI-TENG based wireless media control system for a self-powered user interface. The device architecture and design scheme presented here provide a promising solution towards the realization of self-powered human-integrated technologies. 
    more » « less
  2. Abstract

    Triboelectric nanogenerators (TENGs) are devices capable of effectively harvesting electrical energy from mechanical motion prevalent around us. With the goal of developing TENGs with a small environmental footprint, herein we present the potential of using rubber and paper as biological materials for constructing triboelectric nanogenerators. We explored the performance of these TENGs with various contact material combinations, electrode sizes, and operational frequencies. The optimally configured TENG achieved a maximum open circuit output voltage of over 30 V, and a short circuit current of around 3 µA. Additionally, this optimally configured TENG was capable of charging various capacitors and achieved a maximum power output density of 21 mW/m2. This work demonstrates that biologically derived materials can be used as effective, sustainable, and low-cost contact materials for the development of triboelectric nanogenerators with minimal environmental footprint.

     
    more » « less
  3. null (Ed.)
    Self-healing triboelectric nanogenerators (SH-TENGs) with fast self-healing, high output performance, and wearing comfort have wide and promising applications in wearable electronic devices. This work presents a high-performance hydrogel-based SH-TENG, which consists of a high dielectric triboelectric layer (HDTL), a self-healing hydrogel electrode layer (SHEL), and a physical cross-linking layer (PCLL). Carbon nanotubes (CNTs), obtained by a chemical vapor deposition (CVD) method, were added into polydimethylsiloxane (PDMS) to produce the HDTL. Compared with pure PDMS, the short-circuit transferred charge (44 nC) and the open circuit voltage (132 V) are doubled for PDMS with 0.01 wt% CNTs. Glycerin, polydopamine particles (PDAP) and graphene were added to poly (vinyl alcohol) (PVA) to prepare the self-healing hydrogel electrode layer. SHEL can physically self-heal in ~1 min when exposed to air. The self-healing efficiency reaches up to 98%. The PCLL is made of poly(methylhydrosiloxane) (PMHS) and PDMS. It forms a good physical bond between the hydrophilic hydrogel and hydrophobic PDMS layers. The electric output performance of the SH-TENG can reach 94% of the undamaged one in 1 min. The SH-TENG (6 × 6 cm2) exhibits good stability and superior electrical performance, enabling it to power 37 LEDs simultaneously. 
    more » « less
  4. Abstract

    Innovative human–machine interfaces (HMIs) have attracted increasing attention in the field of system control and assistive devices for disabled people. Conventional HMIs that are designed based on the interaction of physical movements or language communication are not effective or appliable to severely disabled users. Here, a breath‐driven triboelectric sensor is reported consisting of a soft fixator and two circular‐shaped triboelectric nanogenerators (TENGs) for self‐powered respiratory monitoring and smart system control. The sensor device is capable of effectively detecting the breath variation and generates responsive electrical signals based on different breath patterns without affecting the normal respiration. A breathing‐driven HMI system is demonstrated for severely disabled people to control electrical household appliances and shows an intelligent respiration monitoring system for emergence alarm. The new system provides the advantages of high sensitivity, good stability, low cost, and ease of use. This work will not only expand the development of the TENGs in self‐powered sensors, but also opens a new avenue to develop assistive devices for disabled people through innovation of advanced HMIs.

     
    more » « less
  5. null (Ed.)
    Cellulose-based materials have gained increasing attention for the development of low cost, eco-friendly technologies, and more recently, as functional materials in triboelectric nanogenerators (TENGs). However, the low output performance of cellulose-based TENGs severely restricts their versatility and employment in emerging smart building and smart city applications. Here, we report a high output performance of a commercial cellulosic material-based energy harvesting floor (CEHF). Benefiting from the significant difference in the triboelectric properties between weighing and nitrocellulose papers, high surface roughness achieved by a newly developed mechanical exfoliation method, and large overall contact area via a multilayered device structure, the CEHF (25 cm × 15 cm × 1.2 cm) exhibits excellent output performance with a maximum output voltage, current, and power peak values of 360 V, 250 μA, and 5 mW, respectively. It can be directly installed or integrated with regular flooring products to effectively convert human body movements into electricity and shows good durability and stability. Moreover, a wireless transmission sensing system that can produce a 1:1 footstep-to-signal (transmitted and received) ratio is instantaneously powered by a TENG based entirely on cellulosic materials for the first time. This work provides a feasible and effective way to utilize commercial cellulosic materials to construct self-powered wireless transmission systems for real-time sensing applications. 
    more » « less