skip to main content

Title: A role for the Auxin Response Factors ARF6 and ARF8 homologs in petal spur elongation and nectary maturation in Aquilegia

The petal spur of the basal eudicotAquilegiais a key innovation associated with the adaptive radiation of the genus. Previous studies have shown that diversification ofAquilegiaspur length can be predominantly attributed to variation in cell elongation. However, the genetic pathways that control the development of petal spurs are still being investigated.

Here, we focus on a pair of closely related homologs of the AUXIN RESPONSE FACTOR family,AqARF6andAqARF8, to explore their roles inAquileiga coeruleapetal spur development.

Expression analyses of the two genes show that they are broadly expressed in vegetative and floral organs, but have relatively higher expression in petal spurs, particularly at later stages. Knockdown of the twoAqARF6andAqARF8transcripts using virus‐induced gene silencing resulted in largely petal‐specific defects, including a significant reduction in spur length due to a decrease in cell elongation. These spurs also exhibited an absence of nectar production, which was correlated with downregulation ofSTYLISHhomologs that have previously been shown to control nectary development.

This study provides the first evidence ofARF6/8homolog‐mediated petal development outside the core eudicots. The genes appear to be specifically required for cell elongation and nectary maturation in theAquilegiapetal spur.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
New Phytologist
Page Range / eLocation ID:
p. 1392-1405
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The evolution of novel features, such as eyes or wings, that allow organisms to exploit their environment in new ways can lead to increased diversification rates. Therefore, understanding the genetic and developmental mechanisms involved in the origin of these key innovations has long been of interest to evolutionary biologists. In flowering plants, floral nectar spurs are a prime example of a key innovation, with the independent evolution of spurs associated with increased diversification rates in multiple angiosperm lineages due to their ability to promote reproductive isolation via pollinator specialization. As none of the traditional plant model taxa have nectar spurs, little is known about the genetic and developmental basis of this trait. Nectar spurs are a defining feature of the columbine genusAquilegia(Ranunculaceae), a lineage that has experienced a relatively recent and rapid radiation. We use a combination of genetic mapping, gene expression analyses, and functional assays to identify a gene crucial for nectar spur development,POPOVICH(POP), which encodes a C2H2 zinc-finger transcription factor.POPplays a central role in regulating cell proliferation in theAquilegiapetal during the early phase (phase I) of spur development and also appears to be necessary for the subsequent development of nectaries. The identification ofPOPopens up numerous avenues for continued scientific exploration, including further elucidating of the genetic pathway of which it is a part, determining its role in the initial evolution of theAquilegianectar spur, and examining its potential role in the subsequent evolution of diverse spur morphologies across the genus.

    more » « less
  2. Summary

    Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation.

    We characterized the role of two classes of leaf adaxial–abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation inMimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development.

    Loss ofSGS3function led to reduced style length via limiting cell division, and downregulation ofYABBYgenes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when bothSGS3andYABBYfunctions were disrupted.

    We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.

    more » « less
  3. Summary

    Petal pigmentation patterning is widespread in flowering plants. The genetics of these pattern elements has been of great interest for understanding the evolution of phenotypic diversification. Here, we investigate the genetic changes responsible for the evolution of an unpigmented petal element on a colored background.

    We used transcriptome analysis, gene expression assays, cosegregation in F2plants and functional tests to identify the gene(s) involved in petal coloration inClarkia gracilisssp.sonomensis.

    We identified an R2R3‐MYB transcription factor (CgsMYB12) responsible for anthocyanin pigmentation of the basal region (‘cup’) in the petal ofC.gracilisssp.sonomensis. A functional mutation inCgsMYB12creates a white cup on a pink petal background. Additionally, we found that twoR2R3‐MYBgenes (CgsMYB6andCgsMYB11) are also involved in petal background pigmentation. Each of these threeR2R3‐MYBgenes exhibits a different spatiotemporal expression pattern. The functionality of theseR2R3‐MYBgenes was confirmed through stable transformation ofArabidopsis.

    Distinct spatial patterns ofR2R3‐MYBexpression have created the possibility that pigmentation in different sections of the petal can evolve independently. This finding suggests that recent gene duplication has been central to the evolution of petal pigmentation patterning inC. gracilisssp.sonomensis.

    more » « less
  4. Summary

    Evolution of complex phenotypes depends on the adaptive importance of individual traits, and the developmental changes required to modify traits. Floral syndromes are complex adaptations to pollinators that include color, nectar, and shape variation. Hummingbird‐adapted flowers have evolved a remarkable number of times from bee‐adapted ancestors inPenstemon, and previous work demonstrates that color over shape better distinguishes bee from hummingbird syndromes. Here, we examined the relative importance of nectar volume and nectary development in definingPenstemonpollination syndromes.

    We tested the evolutionary association of nectar volume and nectary area with pollination syndrome across 19Penstemonspecies. In selected species, we assessed cellular‐level processes shaping nectary size. Within a segregating population from an intersyndrome cross, we assessed trait correlations between nectar volume, nectary area, and the size of stamens on which nectaries develop.

    Nectar volume and nectary area displayed an evolutionary association with pollination syndrome. These traits were correlated within a genetic cross, suggesting a mechanistic link. Nectary area evolution involves parallel processes of cell expansion and proliferation.

    Our results demonstrate that changes to nectary patterning are an important contributor to pollination syndrome diversity and provide further evidence that repeated origins of hummingbird adaptation involve parallel developmental processes inPenstemon.

    more » « less
  5. Summary

    Evolutionarily conserved DEK domain‐containing proteins have been implicated in multiple chromatin‐related processes, mRNA splicing and transcriptional regulation in eukaryotes.

    Here, we show that two DEK proteins, DEK3 and DEK4, control the floral transition inArabidopsis. DEK3 and DEK4 directly associate with chromatin of related flowering repressors,FLOWERING LOCUS C(FLC), and its two homologs,MADS AFFECTING FLOWERING4(MAF4) andMAF5, to promote their expression.

    The binding of DEK3 and DEK4 to a histone octamerin vivoaffects histone modifications atFLC,MAF4andMAF5loci. In addition, DEK3 and DEK4 interact with RNA polymerase II and promote the association of RNA polymerase II withFLC,MAF4andMAF5chromatin to promote their expression.

    Our results show that DEK3 and DEK4 directly interact with chromatin to facilitate the transcription of key flowering repressors and thus prevent precocious flowering inArabidopsis.

    more » « less