Abstract In this study we focus on the investigation of the absolute intensity records of two volcanic subsequences, aiming to enrich the global paleointensity database for the last 5 Ma, which currently shows important dispersion. We present new absolute paleointensities obtained from the Plio‐Pleistocene volcanic sequence of Korkhi (Djavakheti Highland, Georgia) (41°27′31″N, 43°27′55″E). Korkhi is divided into two lava flow subsequences dated at 3.11 ± 0.20 Ma and 1.85 ± 0.08 Ma. Paleomagnetic directions previously published (Sánchez‐Moreno et al., 2018,https://doi.org/10.1029/2017GC007358) show a normal polarity in the lower Korkhi subsequence and a reverse‐to‐intermediate polarity in the upper Korkhi subsequence. The new paleointensity determinations are obtained through two different Thellier‐type protocols (Thellier‐Thellier and IZZI) and the corrected multispecimen method. We utilize different selection criteria and interpretation approaches (TTB, CCRIT, BiCEP and multimethod), and we make a critical evaluation on their application on complex magnetic behaviors, such as often found in volcanic rocks. Finally, we obtained a paleointensity of 70 μT in upper Korkhi and 14 paleointensities in lower Korkhi that vary between 5.2 and 37.2 μT. These results agree with a recently proposed non‐Geocentric Axial Dipole (GAD) hypothesis for the last ∼1.5 Ma (Cych et al., 2023,https://doi.org/10.1029/2023JB026492), and with low field strength for the 3–4 Ma. 
                        more » 
                        « less   
                    
                            
                            Changes in Non‐Dipolar Field Structure Over the Plio‐Pleistocene: New Paleointensity Results From Hawai'i Compared to Global Data Sets
                        
                    
    
            Abstract A foundational assumption in paleomagnetism is that the Earth's magnetic field behaves as a geocentric axial dipole (GAD) when averaged over sufficient timescales. Compilations of directional data averaged over the past 5 Ma yield a distribution largely compatible with GAD, but the distribution of paleointensity data over this timescale is incompatible. Reasons for the failure of GAD include: (a) Arbitrary “selection criteria” to eliminate “unreliable” data vary among studies, so the paleointensity database may include biased results. (b) The age distribution of existing paleointensity data varies with latitude, so different latitudinal averages represent different time periods. (c) The time‐averaged field could be truly non‐dipolar. Here, we present a consistent methodology for analyzing paleointensity results and comparing time‐averaged paleointensities from different studies. We apply it to data from Plio/Pleistocene Hawai'ian igneous rocks, sampled from fine‐grained, quickly cooled material (lava flow tops, dike margins and scoria cones) and subjected to the IZZI‐Thellier technique; the data were analyzed using the Bias Corrected Estimation of Paleointensity method of Cych et al. (2021,https://doi.org/10.1029/2021GC009755), which produces accurate paleointensity estimates without arbitrarily excluding specimens from the analysis. We constructed a paleointensity curve for Hawai'i over the Plio/Pleistocene using the method of Livermore et al. (2018,https://doi.org/10.1093/gji/ggy383), which accounts for the age distribution of data. We demonstrate that even with the large uncertainties associated with obtaining a mean field from temporally sparse data, our average paleointensities obtained from Hawai'i and Antarctica (reanalyzed from Asefaw et al., 2021,https://doi.org/10.1029/2020JB020834) are not GAD‐like from 0 to 1.5 Ma but may be prior to that. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10418653
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 128
- Issue:
- 6
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission.more » « less
- 
            Abstract We examine the behavior of natural basaltic and trachytic samples during paleointensity experiments on both the original and laboratory‐acquired thermal remanences and characterize the samples using proxies for domain state including curvature (k) and the bulk domain stability parameters of Paterson (2011,https://doi.org/10.1029/2011JB008369) and Paterson et al. (2017,https://doi.org/10.1073/pnas.1714047114), respectively. A curvature value of 0.164 (suggested by Paterson, 2011,https://doi.org/10.1029/2011JB008369) as a critical threshold that separates single‐domain‐like remanences from multidomain‐like remanances on the original paleointensity data was used to separate samples into “straight” (single‐domain‐like) and “curved” (multidomain‐like) groups. Specimens from the two sample sets were given a “fresh” thermal remanent magnetization in a 70 μT field and subjected to an infield‐zerofield, zerofield‐infield (IZZI)‐type (Yu et al., 2004,https://doi.org/10.1029/2003GC000630) paleointensity experiment. The straight sample set recovered the laboratory field with high precision while the curved set had much more scattered results (70.5 ± 1.5 and 71.9 ± 5.2 μT, respectively). The average intensity of both sets for straight and curved was quite close to the laboratory field of 70 μT, however, suggesting that if experiments contain a sufficient number of specimens, there does not seem to be a large bias in the field estimate. We found that the dependence of the laboratory thermal remanent magnetization on cooling rate was significant in most samples and did not depend on domain states inferred from proxies based on hysteresis measurements and should be estimated for all samples whose cooling rates differ from that used in the laboratory.more » « less
- 
            Abstract Liu et al. (2022,https://doi.org/10.1029/2021GL093691) used Rayleigh waves extracted from the cross‐correlation of ambient noise recorded by two stations to monitor the seismic velocity variations associated with the 2018 Kı̄lauea eruption. However, their study ignored the fact that the tremors on the Island of Hawai'i were dominated by a source at the Kı̄lauea summit before the eruption. Close inspection of the waveforms of the station pair PAUD‐STCD shows a simple, mistakenly identified wave traveling direction in Liu et al. (2022,https://doi.org/10.1029/2021GL093691). A correct wave traveling direction agrees with the noise source model, where the dominant tremor source should be at the Kı̄lauea summit. Because of the drastic change in the tremor source after the eruption, the cross‐correlation of the tremor records may reflect predominantly changes in the source rather than in the medium properties between the two stations.more » « less
- 
            Abstract Recent advances in remote sensing of solar‐induced chlorophyll fluorescence (SIF) have garnered wide interest from the biogeoscience and Earth system science communities, due to the observed linearity between SIF and gross primary productivity (GPP) at increasing spatiotemporal scales. Three recent studies, Maguire et al., (2020,https://doi.org/10.1029/2020GL087858), He et al. (2020,https://doi.org/10.1029/2020GL087474), and Marrs et al. (2020,https://doi.org/10.1029/2020GL087956) highlight a nonlinear relationship between fluorescence and photochemical yields and show empirical evidence for the decoupling of SIF, stomata, and the carbon reactions of photosynthesis. Such mechanistic studies help advance our understanding of what SIF is and what it is not. We argue that these findings are not necessarily contradictory to the linear SIF‐GPP relationship observed at the satellite scale and provide context for where, when, and why fluorescence and photosynthesis diverge at smaller spatiotemporal scales. Understanding scale dependencies of remote sensing data is crucial for interpreting SIF as a proxy for GPP.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
