Abstract Carbon starvation posits that defoliation‐ and drought‐induced mortality results from drawing down stored non‐structural carbohydrates (NSCs), but evidence is mixed, and few studies evaluate mortality directly. We tested the relationships among defoliation severity, NSC drawdown and tree mortality by measuring NSCs in mature oak trees defoliated by an invasive insect,Lymantria dispar, across a natural gradient of defoliation severity.We collected stem and root samples from mature oaks (Quercus rubraandQ.alba) in interior forests (n = 34) and forest edges (n = 47) in central Massachusetts, USA. Total NSC (TNC; sugar + starch) stores were analysed with respect to tree size, species and defoliation severity, which ranged between 5% and 100%.TNC stores declined significantly with increasingly severe defoliation. Forest edge trees had higher TNC stores that were less sensitive to defoliation than interior forest trees, although this may be a result of differing defoliation history. Furthermore, we observed a mortality threshold of 1.5% dry weight TNC.Our study draws a direct link between insect defoliation and TNC reserves and defines a TNC threshold below which mortality is highly likely. These findings advance understanding and improve model parametrization of tree response to insect outbreaks, an increasing threat with globalization and climate change. A freePlain Language Summarycan be found within the Supporting Information of this article. 
                        more » 
                        « less   
                    
                            
                            Landowner functional types to characterize response to invasive forest insects
                        
                    
    
            Abstract Invasive forest insects can induce tree mortality in two ways: (a) by directly harming trees; or (b) by influencing forest owners to pre‐emptively harvest threatened trees. This study investigates forest owners’ intentions to harvest trees threatened by invasive insects.Our first objective is to identify and characterize agent functional types (AFTs) of family forest owners in the northeastern United States using a set of contingent behaviour questions contained in a mail survey. We establish AFTs as a form of dimension reduction, effectively casting landowners into a typology in which each type (AFT) has distinct probabilities of tree harvesting in response to forest insects. Our analysis identifies three functional types of landowners: ‘Cutters’ (46% of respondents; high intent to harvest trees impacted by invasive forest insects), ‘Responsive Cutters’ (42% of respondents; intent sensitive to insect impact severity), and ‘Non‐cutters’ (12% of respondents; low intent to cut).Our second objective is to model AFT membership to predict the distribution of AFTs across the landscape. Predictors are chosen from a set of survey, geographic and demographic features. Our best AFT‐prediction model has three predictor variables: parcel size (hectares of forest), geographical region, and town‐level forested fraction. Application of the model provides a high‐resolution probability distribution of AFTs across the landscape.By coupling human and insect behaviour, our results allow for holistic assessments of how invasive forest insects disturb forests, inclusive of the management response to these pests. A freePlain Language Summarycan be found within the Supporting Information of this article. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1832210
- PAR ID:
- 10456717
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- People and Nature
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2575-8314
- Format(s):
- Medium: X Size: p. 204-216
- Size(s):
- p. 204-216
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ectomycorrhizal (EM) effects on forest ecosystem carbon (C) and nitrogen (N) cycling are highly variable, which may be due to underappreciated functional differences among EM‐associating trees. We hypothesise that differences in functional traits among EM tree genera will correspond to differences in soil organic matter (SOM) dynamics.We explored how differences among three genera of angiosperm EM trees (Quercus,Carya, andTilia) in functional traits associated with leaf litter quality, resource use and allocation patterns, and microbiome assembly related to overall soil biogeochemical properties.We found consistent differences among EM tree genera in functional traits.Quercustrees had lower litter quality, lower δ13C in SOM, higher δ15N in leaf tissues, greater oxidative extracellular enzyme activities, and higher EM fungal diversity thanTiliatrees, whileCaryatrees were often intermediary. These functional traits corresponded to overall SOM‐C and N dynamics and soil fungal and bacterial community composition.Our findings suggest that trait variation among EM‐associating tree species should be an important consideration in assessing plant–soil relationships such that EM trees cannot be categorised as a unified functional guild. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            Forest insects and pathogens have significant impacts on U.S. forests, annually affecting an area nearly three times that of wildfires and timber harvesting combined. However, coupled with these direct effects of forest insects and pathogens are the indirect impacts through influencing forest management practices, such as harvesting. In an earlier study, we surveyed private woodland owners in the northeastern U.S. and 84% of respondents indicated they intended to harvest in at least one of the presented insect invasion scenarios. This harvest response to insects represents a potentially significant shift in the timing, extent, and species selection of harvesting. Here we used the results from the landowner survey, regional forest inventory data, and characteristics of the emerald ash borer (Species: Agrilus planipennis Fairmaire, 1888) invasion to examine the potential for a rapidly spreading invasive insect to alter harvest regimes and affect regional forest conditions. Our analysis suggests that 25% of the woodland parcels in the Connecticut River Watershed in New England may intend to harvest in response to emerald ash borer. If the emerald ash borer continues to spread at its current rate within the region, and therefore the associated management response occurs in the next decade, this could result in an increase in harvest frequencies, from 2.6% year−1 (historically) to 3.7% year−1 through to approximately 2030. If harvest intensities remain at levels found in remeasured Forest Inventory and Analysis plots, this insect-initiated harvesting would result in the removal of 12%–13% of the total aboveground biomass. Eighty-one percent of the removed biomass would be from species other than ash, creating a forest disturbance that is over twice the magnitude than that created by emerald ash borer alone, with the most valuable co-occurring species most vulnerable to biomass loss.more » « less
- 
            Abstract Maternally transmitted microbes are ubiquitous. In insects, maternal microbes can play a role in mediating the insect immune response. Less is known about how ecological factors, such as resource use, interact with maternal microbes to affect immunity.In the context of a recent colonization of a novel host plant by the Melissa blue butterflyLycaeides melissa, we investigated the interaction between host plant use and vertically transmitted, extracellular egg‐associated microbes in determining the strength of the insect immune response.We reared larvae on two different host plant species: a native hostAstragalus canadensisand a novel hostMedicago sativa. Egg‐associated microbes were removed through a series of antimicrobial egg washes prior to hatching. Immune response was measured through three assays: standing phenoloxidase (PO), total PO and melanization.We detected strong effects of microbial removal. Egg washing resulted in larvae with an increased immune response as measured by total PO—contrary to reports from other taxa. The effect of washing was especially strong for larvae consuming the native host plant.This result may explain why consumption of the egg casing is not a universal behaviour in insects, due to negative effects on larval immunity. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            Abstract Climate change is stressing many forests around the globe, yet some tree species may be able to persist through acclimation and adaptation to new environmental conditions. The ability of a tree to acclimate during its lifetime through changes in physiology and functional traits, defined here as its acclimation potential, is not well known.We investigated the acclimation potential of trembling aspenPopulus tremuloidesand ponderosa pinePinus ponderosatrees by examining within‐species variation in drought response functional traits across both space and time, and how trait variation influences drought‐induced tree mortality. We measured xylem tension, morphological traits and physiological traits on mature trees in southwestern Colorado, USA across a climate gradient that spanned the distribution limits of each species and 3 years with large differences in climate.Trembling aspen functional traits showed high within‐species variation, and osmotic adjustment and carbon isotope discrimination were key determinants for increased drought tolerance in dry sites and in dry years. However, trembling aspen trees at low elevation were pushed past their drought tolerance limit during the severe 2018 drought year, as elevated mortality occurred. Higher specific leaf area during drought was correlated with higher percentages of canopy dieback the following year. Ponderosa pine functional traits showed less within‐species variation, though osmotic adjustment was also a key mechanism for increased drought tolerance. Remarkably, almost all traits varied more year‐to‐year than across elevation in both species.Our results shed light on the scope and limits of intraspecific trait variation for mediating drought responses in key southwestern US tree species and will help improve our ability to model and predict forest responses to climate change. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
