skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Experimental removal of extracellular egg‐associated microbes has long‐lasting effects for larval performance
Abstract

Maternally transmitted microbes are ubiquitous. In insects, maternal microbes can play a role in mediating the insect immune response. Less is known about how ecological factors, such as resource use, interact with maternal microbes to affect immunity.

In the context of a recent colonization of a novel host plant by the Melissa blue butterflyLycaeides melissa, we investigated the interaction between host plant use and vertically transmitted, extracellular egg‐associated microbes in determining the strength of the insect immune response.

We reared larvae on two different host plant species: a native hostAstragalus canadensisand a novel hostMedicago sativa. Egg‐associated microbes were removed through a series of antimicrobial egg washes prior to hatching. Immune response was measured through three assays: standing phenoloxidase (PO), total PO and melanization.

We detected strong effects of microbial removal. Egg washing resulted in larvae with an increased immune response as measured by total PO—contrary to reports from other taxa. The effect of washing was especially strong for larvae consuming the native host plant.

This result may explain why consumption of the egg casing is not a universal behaviour in insects, due to negative effects on larval immunity.

Read the freePlain Language Summaryfor this article on the Journal blog.

 
more » « less
Award ID(s):
1638793
PAR ID:
10372448
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
36
Issue:
12
ISSN:
0269-8463
Page Range / eLocation ID:
p. 3248-3258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Identifying patterns of pathogen infection in natural systems is crucial to understanding mechanisms of host–pathogen interactions. In this study, we explored how Junonia coenia densovirus (JcDV) infection varies over space and time in populations of the Melissa blue butterfly (Lycaeides melissa: Lycaenidae) using two different host plants. Collections ofL. melissaadults from multiple populations and years, along with host plant tissue and community samples of arthropods found on host plants, were screened to determine JcDV prevalence and load. Additionally, we sampled at multiple time points within a singleL. melissaflight season to investigate intra‐annual variation in infection patterns.

    We found population‐specific variation in viral prevalence ofL. melissaacross collection years, with historical samples potentially having higher viral prevalence than contemporary samples, although host plant diet was not informative for these patterns. Patterns of infection across multiple generations within a flight season showed that late‐season samples had a higher proportion of JcDV‐positive individuals, suggesting an accumulation of virus over the season. Sequence data from a segment of the JcDV capsid gene showed a lack of viral genetic diversity betweenL. melissacollected from different localities, and little to no viral particles were found in the surrounding environment.

    Our discovery of temporal variation in infection suggests that multiple sampling efforts must be made when describing pathogen prevalence in multivoltine hosts. Our findings represent an important first step towards further exploration of the ecological factors mediating disease prevalence and host‐specific variability of infection in wild insect populations.

     
    more » « less
  2. Summary

    Abiotic and biotic environments influence a myriad of plant‐related processes, including growth, development, and the establishment and maintenance of interaction(s) with microbes. In the case of the latter, elevated temperature has been shown to be a key factor that underpins host resistance and pathogen virulence.

    In this study, we elucidate a role forArabidopsisNON‐RACE‐SPECIFIC DISEASE RESISTANCE1 (NDR1) by exploiting effector‐triggered immunity to define the regulation of plant host immunity in response to both pathogen infection and elevated temperature.

    We generated time‐series RNA sequencing data of WT Col‐0, anNDR1overexpression line, andndr1andics1‐2mutant plants under elevated temperature. Not surprisingly, theNDR1‐overexpression line showed genotype‐specific gene expression changes related to defense response and immune system function.

    The results described herein support a role for NDR1 in maintaining cell signaling during simultaneous exposure to elevated temperature and avirulent pathogen stressors.

     
    more » « less
  3. Abstract

    Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterfliesDanaus plexippus, consistently experience infection by a virulent parasiteOphryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity.

    We investigated plant‐mediated influences of elevated CO2(eCO2) on endogenous immune responses of monarch larvae to infection byO. elektroscirrha. Recently, transcriptomics have revealed that infection byO. elektroscirrhadoes not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2alter the balance between exogenous and endogenous sources of immunity remains unknown.

    We fed monarchs two species of milkweed;A. curassavica(medicinal) andA. incarnata(non‐medicinal) grown under ambient CO2(aCO2) or eCO2. We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions.

    The melanization response of late‐instar larvae was reduced on medicinal milkweed in comparison to non‐medicinal milkweed. Moreover, the endogenous immune responses of early‐instar larvae to infection byO. elektroscirrhawere generally lower in larvae reared on foliage from aCO2plants and higher in larvae reared on foliage from eCO2plants. When grown under eCO2, milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2results in increased endogenous immune function.

    Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.

     
    more » « less
  4. Jaronski, Stefan (Ed.)
    Abstract An important goal of disease ecology is to understand trophic interactions influencing the host–pathogen relationship. This study focused on the effects of diet and immunity on the outcome of viral infection for the polyphagous butterfly, Vanessa cardui Linnaeus (Lepidoptera: Nymphalidae) (painted lady). Specifically, we aimed to understand the role that larval host plants play when fighting a viral pathogen. Larvae were orally inoculated with the entomopathogenic virus, Junonia coenia densovirus (JcDV) (Family Parvoviridae, subfamily Densovirinae, genus Protoambidensovirus, species Lepidopteran protoambidensovirus 1) and reared on two different host plants (Lupinus albifrons Bentham (Fabales: Fabaceae) or Plantago lanceolata Linnaeus (Lamiales: Plantaginaceae)). Following viral infection, the immune response (i.e., phenoloxidase [PO] activity), survival to adulthood, and viral load were measured for individuals on each host plant. We found that the interaction between the immune response and survival of the viral infection was host plant dependent. The likelihood of survival was lowest for infected larvae exhibiting suppressed PO activity and feeding on P. lanceolata, providing some evidence that PO activity may be an important defense against viral infection. However, for individuals reared on L. albifrons, the viral infection had a negligible effect on the immune response, and these individuals also had higher survival and lower viral load when infected with the pathogen compared to the controls. Therefore, we suggest that host plant modifies the effects of JcDV infection and influences caterpillars’ response when infected with the virus. Overall, we conclude that the outcome of viral infection is highly dependent upon diet, and that certain host plants can provide protection from pathogens regardless of immunity. 
    more » « less
  5. Background: Exotic plant species represent a novel resource for invertebrates and many herbivorous insects have incorporated exotic plants into their diet. Using a new host plant can have physiological repercussions for these herbivores that may be beneficial or detrimental. In this study, we compared how using an exotic versus native host plant affected the immune system response and feeding efficiency of a specialist lepidopteran, the common buckeye ( Junonia coenia : Nymphalidae, Hübner 1822). Materials and Methods: In a lab experiment, larvae were reared on either the exotic host plant, Plantago lanceolata (Plantaginaceae), or the native host plant, Mimulus guttatus (Phrymaceae). Beginning at second instar feeding efficiency data were collected every 2 days until fifth instar when immune assays were performed. Immune assays consisted of standing phenoloxidase activity, total phenoloxidase activity, and melanization. Results: Interestingly, we found that all three immune system parameters were higher on the exotic host plant compared to the native host plant. The exotic host plant also supported higher pupal weights, faster development time, greater consumption, and more efficient approximate digestibility. In contrast, the native host plant supported higher efficiency of conversion of ingested and digested food. The relationship between immunity and feeding efficiency was more complex but showed a large positive effect of greater host plant consumption on all immune parameters, particularly for the exotic host plant. While not as strong, the efficiency of conversion of digested food tended to show a negative effect on the three immune parameters. Conclusion: Overall, the exotic host plant proved to be beneficial for this specialist insect with regard to immunity and many of the feeding efficiency parameters and continued use of this host plant is predicted for populations already using it. 
    more » « less