skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical Simulations of High‐Frequency Gravity Wave Propagation Through Fine Structures in the Mesosphere
Abstract An anelastic numerical model is used to study the influences of fine structure (FS) in the wind and stability profiles on gravity wave (GW) propagation in the Mesosphere and Lower Thermosphere (MLT). Large amplitude GWs interacting with FS, that is, thin regions of enhanced wind and stability, evolve very differently depending on the precise vorticity source and sink terms for small‐scale motions induced by the FS gradients. The resulting small‐scale dynamics are deterministic, promoting local instabilities, dissipation, and momentum deposition at locations and orientations determined by the initial FS. The resulting momentum depositions yield significant changes to the background wind structure, having scales and amplitudes comparable to the effects of large‐scale features in the ambient atmosphere. The deterministic nature of the large‐scale impacts further suggests that they can be estimated without fully resolving the underlying instability dynamics. Given the significant amplitudes and ubiquitous occurrence of FS throughout the atmosphere, the influences of these important and diverse flow evolutions merit inclusion in broader modeling efforts.  more » « less
Award ID(s):
1632772 1758293
PAR ID:
10456729
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
124
Issue:
16
ISSN:
2169-897X
Page Range / eLocation ID:
p. 9372-9390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Analyses of atmospheric heat and moisture budgets serve as an effective tool to study convective characteristics over a region and to provide large‐scale forcing fields for various modeling applications. This paper examines two popular methods for computing large‐scale atmospheric budgets: the conventional budget method (CBM) using objectively gridded analyses based primarily on radiosonde data and the constrained variational analysis (CVA) approach which supplements vertical profiles of atmospheric fields with measurements at the top of the atmosphere and at the surface to conserve mass, water, energy, and momentum. Successful budget computations are dependent on accurate sampling and analyses of the thermodynamic state of the atmosphere and the divergence field associated with convection and the large‐scale circulation that influences it. Utilizing analyses generated from data taken during Dynamics of the Madden‐Julian Oscillation (DYNAMO) field campaign conducted over the central Indian Ocean from October to December 2011, we evaluate the merits of these budget approaches and examine their limitations. While many of the shortcomings of the CBM, in particular effects of sampling errors in sounding data, are effectively minimized with CVA, accurate large‐scale diagnostics in CVA are dependent on reliable background fields and rainfall constraints. For the DYNAMO analyses examined, the operational model fields used as the CVA background state provided wind fields that accurately resolved the vertical structure of convection in the vicinity of Gan Island. However, biases in the model thermodynamic fields were somewhat amplified in CVA resulting in a convective environment much weaker than observed. 
    more » « less
  2. Abstract A companion paper by Hecht et al. (2020,https://doi.org/10.1002/2014JD021833) describes high‐resolution observations in the hydroxyl (OH) airglow layer of interactions among adjacent Kelvin‐Helmholtz instabilities (KHI). The interactions in this case were apparently induced by gravity waves propagating nearly orthogonally to the KHI orientations, became strong as Kelvin‐Helmholtz (KH) billows achieved large amplitudes, and included features named “tubes” and “knots” in early laboratory KHI studies. A numerical modeling study approximating the KHI environment and revealing the dynamics of knots and tubes is described here. These features arise where KH billows are misaligned along their axes or where two billows must merge with one. They bear a close resemblance to the observed instability dynamics and suggest that they are likely to occur wherever KHI formation is modulated by variable wind shears, stability, or larger‐scale motions. Small‐scale features typical of those in turbulence develop in association with the formation of the knots and tubes earlier and more rapidly than those accompanying individual billows, supporting an earlier conjecture that tubes and knots are commonly major sources of intense turbulent dissipation accompanying KHI events in the atmosphere. 
    more » « less
  3. Abstract The turbulent ocean surface boundary layer (OSBL) shoals during daytime solar surface heating, developing a diurnal warm layer (DWL). The DWL significantly influences OSBL dynamics by trapping momentum and heat in a shallow near‐surface layer. Therefore, DWL depth is critical for understanding OSBL transport and ocean‐atmosphere coupling. A great challenge for determining DWL depth is considering wave‐driven Langmuir turbulence (LT), which increases vertical transport. This study investigates observations with moderate wind speeds (4–7 m/s at 10 m height) and swell waves for which breaking wave effects are less pronounced. By employing turbulence‐resolving large eddy simulation experiments that cover observed wind, wave, and heating conditions based on the wave‐averaged Craik‐Lebovich equation, we develop a DWL depth scaling unifying previous approaches. This scaling closely agrees with observed DWL depths from a year‐long mooring deployment in the subtropical North Atlantic, demonstrating the critical role of LT in determining DWL depth and OSBL dynamics. 
    more » « less
  4. Abstract We analyze the gravity waves (GWs) from the ground to the thermosphere during 11–14 January 2016 using the nudged HI Altitude Mechanistic general Circulation Model. We find that the entrance, core and exit regions of the polar vortex jet are important for generating primary GWs and amplifying GWs from below. These primary GWs dissipate in the upper stratosphere/lower mesosphere and deposit momentum there; the atmosphere responds by generating secondary GWs. This process is repeated, resulting in medium to large‐scale higher‐order, thermospheric GWs. We find that the amplitudes of the secondary/higher‐order GWs from sources below the polar vortex jet are exponentially magnified. The higher‐order, thermospheric GWs have concentric ring, arc‐like and planar structures, and spread out latitudinally to 10 − 90°N. Those GWs with the largest amplitudes propagate against the background wind. Some of the higher‐order GWs generated over Europe propagate over the Arctic region then southward over the US to ∼15–20°N daily at ∼14 − 24 UT (∼9 − 16 LT) due to the favorable background wind. These GWs have horizontal wavelengthsλH ∼ 200 − 2,200 km, horizontal phase speedscH ∼ 165 − 260 m/s, and periodsτr ∼ 0.3 − 2.4 hr. Such GWs could be misidentified as being generated by auroral activity. The large‐scale, higher‐order GWs are generated in the lower thermosphere and propagate southwestward daily across the northern mid‐thermosphere at ∼8–16 LT withλH ∼ 3,000 km andcH ∼ 650 m/s. We compare the simulated GWs with those observed by AIRS, VIIRS/DNB, lidar and meteor radars and find reasonable to good agreement. Thus the polar vortex jet is important for facilitating the global generation of medium to large‐scale, higher‐order thermospheric GWs via multi‐step vertical coupling. 
    more » « less
  5. Abstract A gravity wave (GW) model that includes influences of temperature variations and large‐scale advection on polar mesospheric cloud (PMC) brightness having variable dependence on particle radius is developed. This Complex Geometry Compressible Atmosphere Model for PMCs (CGCAM‐PMC) is described and applied here for three‐dimensional (3‐D) GW packets undergoing self‐acceleration (SA) dynamics, breaking, momentum deposition, and secondary GW (SGW) generation below and at PMC altitudes. Results reveal that GW packets exhibiting strong SA and instability dynamics can induce significant PMC advection and large‐scale transport, and cause partial or total PMC sublimation. Responses modeled include PMC signatures of GW propagation and SA dynamics, “voids” having diameters of ∼500–1,200 km, and “fronts” with horizontal extents of ∼400–800 km. A number of these features closely resemble PMC imaging by the Cloud Imaging and Particle Size (CIPS) instrument aboard the Aeronomy of Ice in the Mesosphere (AIM) satellite. Specifically, initial CGCAM‐PMC results closely approximate various CIPS images of large voids surrounded by smaller void(s) for which dynamical explanations have not been offered to date. In these cases, the GW and instabilities dynamics of the initial GW packet are responsible for formation of the large void. The smaller void(s) at the trailing edge of a large void is (are) linked to the lower‐ or higher‐altitude SGW generation and primary mean‐flow forcing. We expect an important benefit of such modeling to be the ability to infer local forcing of the mesosphere and lower thermosphere (MLT) over significant depths when CGCAM‐PMC modeling is able to reasonably replicate PMC responses. 
    more » « less