skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A meta‐analysis reveals temperature, dose, life stage, and taxonomy influence host susceptibility to a fungal parasite
Abstract Complex ecological relationships, such as host–parasite interactions, are often modeled with laboratory experiments. However, some experimental laboratory conditions, such as temperature or infection dose, are regularly chosen based on convenience or convention, and it is unclear how these decisions systematically affect experimental outcomes. Here, we conducted a meta‐analysis of 58 laboratory studies that exposed amphibians to the pathogenic fungusBatrachochytrium dendrobatidis(Bd) to understand better how laboratory temperature, host life stage, infection dose, and host species affect host mortality. We found that host mortality was driven by thermal mismatches: hosts native to cooler environments experienced greater Bd‐induced mortality at relatively warm experimental temperatures and vice versa. We also found that Bd dose positively predicted Bd‐induced host mortality and that the superfamilies Bufonoidea and Hyloidea were especially susceptible to Bd. Finally, the effect of Bd on host mortality varied across host life stages, with larval amphibians experiencing lower risk of Bd‐induced mortality than adults or metamorphs. Metamorphs were especially susceptible and experienced mortality when inoculated with much smaller Bd doses than the average dose used by researchers. Our results suggest that when designing experiments on species interactions, researchers should carefully consider the experimental temperature, inoculum dose, and life stage, and taxonomy of the host species.  more » « less
Award ID(s):
1947573 1754862
PAR ID:
10456839
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
4
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract World‐wide, infectious diseases represent a major source of mortality in humans and livestock. For wildlife populations, disease‐induced mortality is likely even greater, but remains notoriously difficult to estimate—especially for endemic infections. Approaches for quantifying wildlife mortality due to endemic infections have historically been limited by an inability to directly observe wildlife mortality in nature.Here we address a question that can rarely be answered for endemic pathogens of wildlife: what are the population‐ and landscape‐level effects of infection on host mortality? We combined laboratory experiments, extensive field data and novel mathematical models to indirectly estimate the magnitude of mortality induced by an endemic, virulent trematode parasite (Ribeiroia ondatrae) on hundreds of amphibian populations spanning four native species.We developed a flexible statistical model that uses patterns of aggregation in parasite abundance to infer host mortality. Our model improves on previous approaches for inferring host mortality from parasite abundance data by (i) relaxing restrictive assumptions on the timing of host mortality and sampling, (ii) placing all mortality inference within a Bayesian framework to better quantify uncertainty and (iii) accommodating data from laboratory experiments and field sampling to allow for estimates and comparisons of mortality within and among host populations.Applying our approach to 301 amphibian populations, we found that trematode infection was associated with an average of between 13% and 40% population‐level mortality. For three of the four amphibian species, our models predicted that some populations experienced >90% mortality due to infection, leading to mortality of thousands of amphibian larvae within a pond. At the landscape scale, the total number of amphibians predicted to succumb to infection was driven by a few high mortality sites, with fewer than 20% of sites contributing to greater than 80% of amphibian mortality on the landscape.The mortality estimates in this study provide a rare glimpse into the magnitude of effects that endemic parasites can have on wildlife populations and our theoretical framework for indirectly inferring parasite‐induced mortality can be applied to other host–parasite systems to help reveal the hidden death toll of pathogens on wildlife hosts. 
    more » « less
  2. Abstract Resistance and tolerance are unique host defence strategies that can limit the impacts of a pathogen on a host. However, for most wildlife–pathogen systems, there are still fundamental uncertainties regarding (a) how changes in resistance and tolerance can affect disease outcomes and (b) the mechanisms underlying resistance and tolerance in host populations.Here, we first compared observed patterns of resistance and tolerance and their effects on disease outcomes among salamander species that are susceptible to infection and mortality from the emerging fungal pathogenBatrachochytrium salamandrivorans(Bsal). We then tested whether two putative mechanisms that contribute to host resistance and tolerance, skin sloughing and skin lesion reduction, predicted reducedBsalgrowth rate or increased host survival during infection, respectively.We performed multi‐doseBsalchallenge experiments on four species of Salamandridae found throughout North America. We combined the laboratory experiments with dynamic models and sensitivity analysis to examine how changes in load‐dependent resistance and tolerance functions affectedBsal‐induced mortality risk. Finally, we used our disease model to test whether skin sloughing and lesion reduction predicted variability in infection outcomes not described byBsalinfection intensity.We found that resistance and tolerance differed significantly among salamander species, with the most susceptible species being both less resistance and less tolerant ofBsalinfection. Our dynamic model showed that the relative influence of resistance versus tolerance on host survival was species‐dependent—increasing resistance was only more influential than increasing tolerance for the least tolerant species where changes in pathogen load had a threshold‐like effect on host survival. Testing two candidate mechanisms of resistance and tolerance, skin sloughing and lesion reduction, respectively, we found limited support that either of these processes were strong mechanisms of host defence.Our study contributes to a broader understanding of resistance and tolerance in host–pathogen systems by showing that differences in host tolerance can significantly affect whether changes in resistance or tolerance have larger effects on disease outcomes, highlighting the need for species and even population‐specific management approaches that target host defence strategies. A freePlain Language Summarycan be found within the Supporting Information of this article. 
    more » « less
  3. Abstract Batrachochytrium dendrobatidis(Bd), an aquatic pathogenic fungus, is responsible for the decline of hundreds of amphibian species worldwide and negatively impacts biodiversity globally. Prophylactic exposure to the metabolites produced by Bd can provide protection for naïve tree frogs and reduce subsequent Bd infection intensity.Here, we used a response surface design crossing Bd metabolite prophylaxis concentration and exposure duration to determine how these factors modulate prophylactic protection against Bd in Pacific chorus frog (Pseudacris regilla) tadpoles (5 × 5 surface design) and metamorphs (3 × 3 surface design). We exposed individuals every weekday to one of five Bd metabolite concentrations or a water control for 1–5 weeks, after which all animals were challenged with live Bd to evaluate their susceptibility.Exposure to the Bd metabolite prophylaxis reduced Bd load and prevalence compared to the control for both the tadpoles and metamorphs. Increasing Bd metabolite prophylaxis concentration did not confer additional protection for either life stage, but increasing duration of exposure did benefit metamorphs by decreasing Bd prevalence but not Bd load.On average, control tadpoles and metamorphs had 66.2% and 99.4% higher Bd loads, respectively, than tadpoles and metamorphs exposed to any Bd metabolite prophylaxis.Additionally, Bd metabolite prophylaxis reduced Bd prevalence relative to controls in both tadpoles (20.5% vs. 56.3%, respectively) and metamorphs (21.9% vs. 87.5%, respectively).Synthesis and applications: The efficacy of short‐term exposures of relatively low concentrations of Bd metabolites at reducing Bd infections suggests that this approach has the potential to be scaled up to field use to aid in disease mitigation and conservation. Our results, combined with additional research on Bd metabolite prophylaxis for other amphibian species, suggest that this strategy may represent a broadly useful tool to protect at‐risk amphibian populations. 
    more » « less
  4. The pathogenic fungusBatrachochytrium dendrobatidis(Bd)is associated with drastic global amphibian declines. Prophylactic exposure to killed zoospores and the soluble chemicals they produce (Bdmetabolites) can induce acquired resistance toBdin adult Cuban treefrogsOsteopilus septentrionalis. Here, we exposed metamorphic frogs of a second species, the Pacific chorus frogPseudacris regilla, to one of 2 prophylactic treatments prior to liveBdexposures: killedBdzoospores with metabolites, killed zoospores alone, or a water control. Prior exposure to killedBdzoospores with metabolites reducedBdinfection intensity in metamorphic Pacific chorus frogs by 60.4% compared to control frogs. Interestingly,Bdintensity in metamorphs previously exposed to killed zoospores alone did not differ in magnitude relative to the control metamorphs, nor to those treated with killed zoospores plus metabolites. Previous work indicated thatBdmetabolites alone can induce acquired resistance in tadpoles, and so these findings together indicate that it is possible that the solubleBdmetabolites may contain immunomodulatory components that drive this resistance phenotype. Our results expand the generality of this prophylaxis work by identifying a second amphibian species (Pacific chorus frog) and an additional amphibian life stage (metamorphic frog) that can acquire resistance toBdafter metabolite exposure. This work increases hopes that aBd-metabolite prophylaxis might be widely effective across amphibian species and life stages. 
    more » « less
  5. Abstract Numerous species of amphibians declined in Central America during the 1980s and 1990s. These declines mostly affected highland stream amphibians and have been primarily linked to chytridiomycosis, a deadly disease caused by the chytrid fungusBatrachochytrium dendrobatidis(Bd). Since then, the majority of field studies on Bd in the Tropics have been conducted in midland and highland environments (>800 m) mainly because the environmental conditions of mountain ranges match the range of ideal abiotic conditions for Bd in the laboratory. This unbalanced sampling has led researchers to largely overlook host–pathogen dynamics in lowlands, where other amphibian species declined during the same period. We conducted a survey testing for Bd in 47 species (n = 348) in four lowland sites in Costa Rica to identify local host–pathogen dynamics and to describe the abiotic environment of these sites. We detected Bd in three sampling sites and 70% of the surveyed species. We found evidence that lowland study sites exhibit enzootic dynamics with low infection intensity and moderate to high prevalence (55% overall prevalence). Additionally, we found evidence that every study site represents an independent climatic zone, where local climatic differences may explain variations in Bd disease dynamics. We recommend more detection surveys across lowlands and other sites that have been historically considered unsuitable for Bd occurrence. These data can be used to identify sites for potential disease outbreaks and amphibian rediscoveries. 
    more » « less