skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Calculating lateral plume spreading with surface Lagrangian drifters
Abstract This work provides a rare quantification of lateral spreading from Lagrangian measurements in a buoyant river plume by comparing four methods. Drifter motions, including along‐stream shear and rotation, can be incorrectly interpreted as lateral spreading. This work aims to improve estimates of lateral spreading by identifying additional motions in drifter trajectories. The techniques applied are first evaluated and compared using an idealized group of drifters undergoing specific types of motion, and then applied to in situ data from 27 surface Lagrangian drifters released in the Merrimack River plume (Massachusetts) under a variety of different environmental conditions. The techniques tested include two methods using the standard deviation of drifter position with respect to various interpretations of mean drifter direction and two methods using a rotating elliptical coordinate reference frame. The idealized trajectories are modeled analytically with each type of motion (i.e., spreading, rotation, and shear) separately, then in different combinations, to identify the method that best resolves and isolates lateral spreading. The idealized experiments demonstrate that three of the methods are sensitive to shear and rotational motion in various combinations. The most robust method resolving lateral spreading is the “time‐step” method, which applies a reference frame that follows the mean flow at each time step, calculated as the average direction of the drifters between two time steps. This method also successfully identifies lateral spreading in observations, which is maximized in classic bulge‐shaped plume deployments. This work is applicable to other river plume systems as well as other propagating oceanographic phenomena.  more » « less
Award ID(s):
1756599
PAR ID:
10456846
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
18
Issue:
7
ISSN:
1541-5856
Page Range / eLocation ID:
p. 346-361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Drifters are energy-efficient platforms for monitoring rivers and oceans. Prior work largely focused on free-floating drifters that drift passively with flow and have little or no controllability. In this paper we propose steerable drifters that use multiple rudders for modulating the hydrodynamic forces and thus maneuvering. A dynamic model for drifters with multiple rudders is presented. Simulation is conducted to examine the behavior of the drifter in two different flow conditions, uniform flow and parabolic flow. When there is no difference in relative flow between the rudders, as in uniform flow, the drifter can only be controlled until its velocity approaches that of the water. However, when present, local flow differentials can be exploited to initiate motion lateral to the ambient flow and control the trajectory of the drifter to some degree. The motion of the drifter is further classified as belonging to one of three major modes, rotational, oscillatory, and stable. The behavior of the drifter in a simulated river was mapped for different rudder angles. Identifying the parameters that induce each mode lays the groundwork for developing a feedback control scheme for the drifter. 
    more » « less
  2. Abstract It has been proposed that hot spot tracks are caused by moving rigid plates above relatively stationary hot spots. However, the fixity of hot spots remains under debate. Here, we perform 3‐D very high resolution (<25 km laterally) global mantle convection models with realistic convection vigor to investigate the lateral motion of mantle plumes. We find that the lateral motion of plumes beneath the Pacific plate is statistically similar to that beneath the Indo‐Atlantic plates. In the past 80 Ma, the majority (>90%) of plumes move laterally with an average speed of 0–20 mm/year under the no‐net‐rotation reference frame, and there are a small portion (~10–20%) of plumes whose lateral motion is less than 5 mm/year. The geodynamic modeling results are statistically in a good agreement with the hot spot motions in the last 5 Ma estimated from observation‐based kinematic models. Our results suggest a small‐to‐moderate (0–20 mm/year) lateral motion of most plume‐induced hot spots. 
    more » « less
  3. We use salinity observations from drifters and moorings at the Quinault River mouth to investigate mixing and stratification in a surf-zone-trapped river plume. We quantify mixing based on the rate of change of salinity DS/Dt in the drifters’ quasi-Lagrangian reference frame. We estimate a constant value of the vertical eddy diffusivity of salt of Kz=(2.2 +/- 0.6) x 10^-3 m^2 s^-1, based on the relationship between vertically integrated DS/Dt and stratification, with values as high as 1 x 10^-2 m^2 s^-1 when stratification is low. Mixing, quantified as DS/Dt, is directly correlated to surf-zone stratification, and is therefore modulated by changes in stratification caused by tidal variability in freshwater volume flux. High DS/Dt is observed when the near-surface stratification is high and salinity gradients are collocated with wave-breaking turbulence. We observe a transition from low stratification and low DS/Dt at low tidal stage to high stratification and high DS/Dt at high tidal stage. Observed wave-breaking turbulence does not change significantly with stratification, tidal stage, or offshore wave height; as a result, we observe no relationship between plume mixing and offshore wave height for the range of conditions sampled. Thus, plume mixing in the surf zone is altered by changes in stratification; these are due to tidal variability in freshwater flux from the river and not wave conditions, presumably because depth-limited wave breaking causes sufficient turbulence for mixing to occur during all observed conditions. 
    more » « less
  4. Abstract The accuracy of sea-ice motion products provided by the National Snow and Ice Data Center (NSIDC) and the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) was validated with data collected by ice drifters that were deployed in the western Arctic Ocean in 2014 and 2016. Data from both NSIDC and OSI-SAF products exhibited statistically significant ( p < 0.001) correlation with drifter data. The OSI-SAF product tended to overestimate ice speed, while underestimation was demonstrated for the NSIDC product, especially for the melt season and the marginal ice zone. Monthly Lagrangian trajectories of ice floes were reconstructed using the products. Larger spatial variability in the deviation between NSIDC and drifter trajectories was observed than that of OSI-SAF, and seasonal variability in the deviation for NSIDC was observed. Furthermore, trajectories reconstructed using the NSIDC product were sensitive to variations in sea-ice concentration. The feasibility of using remote-sensing products to characterize sea-ice deformation was assessed by evaluating the distance between two arbitrary positions as estimated by the products. Compared with the OSI-SAF product, relative errors are lower (<11.6%), and spatial-temporal resolutions are higher in the NSIDC product, which makes it more suitable for estimating sea-ice deformation. 
    more » « less
  5. null (Ed.)
    Drifters deployed in close proximity collectively provide a unique observational data set with which to separate mesoscale and submesoscale flows. In this paper we provide a principled approach for doing so by fitting observed velocities to a local Taylor expansion of the velocity flow field. We demonstrate how to estimate mesoscale and submesoscale quantities that evolve slowly over time, as well as their associated statistical uncertainty. We show that in practice the mesoscale component of our model can explain much first and second-moment variability in drifter velocities, especially at low frequencies. This results in much lower and more meaningful measures of submesoscale diffusivity, which would otherwise be contaminated by unresolved mesoscale flow. We quantify these effects theoretically via computing Lagrangian frequency spectra, and demonstrate the usefulness of our methodology through simulations as well as with real observations from the LatMix deployment of drifters. The outcome of this method is a full Lagrangian decomposition of each drifter trajectory into three components that represent the background, mesoscale, and submesoscale flow. 
    more » « less