skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Self‐Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets
Abstract Advanced synthetic materials are needed to produce nano‐ and mesoscale structures that function autonomously, catalyze reactions, and convert chemical energy into motion. This paper describes supracolloidal fiber‐like structures that are composed of self‐adhering, or “sticky,” oil‐in‐water emulsion droplets. Polymer zwitterion surfactants serve as the key interfacial components of these materials, enabling multiple functions simultaneously, including acting as droplet‐stabilizing surfactants, interdroplet adhesives, and building blocks of the fibers. This fiber motion, a surprising additional feature of these supracolloidal structures, is observed at the air–water interface and hinged on the chemistry of the polymer surfactant. The origin of this motion is hypothesized to involve transport of polymer from the oil–water interface to the air–water interface, which generates a Marangoni (interfacial) stress. Harnessing this fiber motion with functional polymer surfactants, and selection of the oil phase, produced worm‐like objects capable of rotation, oscillation, and/or response to external fields. Overall, these supracolloidal fibers fill a design gap between self‐propelled nano/microscale particles and macroscale motors, and have the potential to serve as new components of soft, responsive materials structures.  more » « less
Award ID(s):
1740630
PAR ID:
10457028
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
41
Issue:
15
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The construction of functional nano-/micro-architectures through self-assembly and self-organization of organic molecules and polymeric materials plays an important role in the development of many technologies. In this study, we report the spontaneous formation of uniform polymer microrods with lengths of up to a few tens of micrometers from paraffin wax. Through a solvent attrition approach, colloidal structures of paraffin wax are introduced into water. After the initial growth stage, the microrods undergo morphological transformation and end-to-end aggregation, processes likely driven by thermodynamics to create equilibrium structures with minimal interfacial energies. The polymer microrods can effectively absorb hydrophobic nanoparticles, indicating their potential to serve as host materials for functional components. The formation of polymer microrods from paraffin wax and their spontaneous growth mechanism discovered in this study may provide new insights to the self-assembly of microstructures. 
    more » « less
  2. Abstract Oil‐in‐water droplets stabilized with polymer zwitterions (PZWs) exhibit salt‐responsive aggregation–disaggregation behavior. Here, a method to shape these droplets is described, starting from their aggregated state, into supracolloidal fibers by simply extruding them into aqueous media. The effect of salt concentration, in both the initial emulsion and the aqueous medium, on the ability of the emulsions to form fibers is examined. After fiber formation, a transition from well‐defined macroscopic structures to noninteracting droplet dispersions can be triggered, simply by increasing the salt concentration of the aqueous environment. The interdroplet energy of adhesion and emulsion rheology correlate qualitatively with salt concentration and thus impact the ability of the emulsions to be shaped by extrusion. The interdroplet adhesion is dependent on both salt concentration and polymer composition, which allows tailoring of conditions to trigger fiber disaggregation. Finally, fibers with variable compositions along their length are prepared by sequential loading and extrusion of emulsions containing oil phases of differing densities. 
    more » « less
  3. Research involving polymer zwitterions typically involves the preparation of ammonium-based structures and their study as coatings or gels that impart hydrophilicity and/or antifouling properties to substrates and materials. More recent synthetic advances have produced a significant expansion in polymer zwitterion chemistry, especially with respect to the composition of the cationic moieties that open new possibilities to examine polymer zwitterions as amphiphiles, functional surfactants, and components of complex emulsions. This article describes the synthesis of new zwitterionic sulfonium sulfonate monomers and their use as starting materials in controlled free radical polymerization to yield the corresponding polymers. These novel polymer zwitterions bear sulfonium sulfonate groups, that possess an inverted dipole directionality relative to prior examples that yields different and unexpected physical and chemical properties. For example, the polymer zwitterions described here are soluble in a wide range of nonaqueous solvents and possess significantly greater stability against nucleophiles relative to their dipole-inverted counterparts. Additionally, the amphiphilic character of these sulfonium sulfonate polymers makes them amenable to use as surfactants for stabilizing oil-in-water emulsions, a feature that is not possible using conventional ultrahydrophilic polymer zwitterions. 
    more » « less
  4. Abstract Checkerboard lattices—where the resulting structure is open, porous, and highly symmetric—are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air–water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials. 
    more » « less
  5. Abstract Stabilizing liquid–liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water‐oil interface is presented using the morphological transitions that occur during the self‐assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small‐angle X‐ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water‐oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid‐in‐liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid–liquid interfaces not only offers unprecedented opportunities for fine‐tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self‐healing, and porosity, which could have significant implications for various industries. 
    more » « less