Abstract Environmental change is expected to alter trophic interactions and food web dynamics with consequences for ecosystem structure, function and stability. However, the mechanisms by which environmental change influences top‐down and bottom‐up processes are poorly documented.Here, we examined how environmental change caused by shrub encroachment affects trophic interactions in a dryland. The predator–prey system included an apex canid predator (coyote;Canis latrans), an intermediate canid predator (kit fox;Vulpes macrotis), and two herbivorous lagomorph prey (black‐tailed jackrabbit,Lepus californicus; and desert cottontail,Sylvilagus audubonii) in the Chihuahuan Desert of New Mexico, USA.We evaluated alternative hypotheses for how shrub encroachment could affect habitat use and trophic interactions, including (i) modifying bottom‐up processes by reducing herbaceous forage, (ii) modifying top‐down processes by changing canid space use or the landscape of fear experienced by lagomorph prey and (iii) altering intraguild interactions between the dominant coyote and the intermediate kit fox. We used 7 years of camera trap data collected across grassland‐to‐shrubland gradients under variable precipitation to test our a priori hypotheses within a structural equation modelling framework.Lagomorph prey responded strongly to bottom‐up pulses during years of high summer precipitation, but only at sites with moderate to high shrub cover. This outcome is inconsistent with the hypothesis that bottom‐up effects should be strongest in grasslands because of greater herbaceous food resources. Instead, this interaction likely reflects changes in the landscape of fear because perceived predation risk in lagomorphs is reduced in shrub‐dominated habitats. Shrub encroachment did not directly affect predation pressure on lagomorphs by changing canid site use intensity. However, site use intensity of both canid species was positively associated with jackrabbits, indicating additional bottom‐up effects. Finally, we detected interactions between predators in which coyotes restricted space use of kit foxes, but these intraguild interactions also depended on shrub encroachment.Our findings demonstrate how environmental change can affect trophic interactions beyond traditional top‐down and bottom‐up processes by altering perceived predation risk in prey. These results have implications for understanding spatial patterns of herbivory and the feedbacks that reinforce shrubland states in drylands worldwide.
more »
« less
Shrub encroachment creates a dynamic landscape of fear for desert lagomorphs via multiple pathways
Abstract Shrub encroachment is transforming arid and semiarid grasslands worldwide. Such transitions should influence predator–prey interactions because vegetation cover often affects risk perception by prey and contributes to their landscape of fear. We examined how the landscape of fear of two desert lagomorphs (black‐tailed jackrabbit,Lepus californicus; desert cottontail,Sylvilagus audubonii) changes across grassland‐to‐shrubland gradients at Jornada Basin Long Term Ecological Research site in the Chihuahuan Desert of southern New Mexico. We test whether shrub encroachment shapes risk differently for these two lagomorphs because of differences in body size and predator escape tactics. We also examine whether an ecosystem engineer of grasslands (banner‐tailed kangaroo rat,Dipodomys spectabilis) mediates risk perception through the creation of escape refuge and whether trade‐offs exist between shrub encroachment and the local reduction of banner‐tailed kangaroo rats caused by shrub expansion. We measured perceived predation risk with flight initiation distances (FIDs) and then used structural equation modeling to tease apart the hypothesized direct and indirect pathways for how shrub encroachment could affect perceived risk. A total negative effect of shrub cover on FID was supported for jackrabbits and cottontails, suggesting both species perceive shrubbier habitat as safer. Increases in fine‐scale concealment also reduced risk for cottontails, but not jackrabbits, likely because cottontails rely on crypsis to avoid predator detection whereas jackrabbits rely on speed and agility to outrun predators. Perceived risk was reduced when individuals were near kangaroo rat mounds only for cottontails because the smaller species can use banner‐tailed kangaroo rat mounds as refuge. Shrub encroachment greatly reduced the availability of mounds. Thus, a trade‐off exists for cottontails in which shrub encroachment directly reduced perceived risk, but indirectly increased perceived risk through the local extirpation of an ecosystem engineer. Our work illustrates how the expansion of shrub encroachment can create a dynamic landscape of fear for populations of prey species involving direct and indirect pathways contingent on prey body size, escape tactics, and activities of an ecosystem engineer.
more »
« less
- PAR ID:
- 10457054
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Woody plant encroachment is a main driver of landscape change in drylands globally. In the Chihuahuan Desert, past livestock overgrazing interacted with prolonged drought to convert vast expanses of black grama (Bouteloua eriopoda) grasslands to honey mesquite (Prosopis glandulosa) shrublands. Such ecosystem state transitions have greatly reduced habitat for grassland wildlife species, increased soil erosion, and inhibited the delivery of ecosystem services to local communities. The potential for wild herbivores to trigger or reinforce shrubland states may be underappreciated, however, and few studies compare herbivory effects across multiple consumer taxa. Here, I address the roles of multiple mammalian herbivores in driving or reinforcing landscape change in the Chihuahuan Desert by examining their effects on plant communities over multiple spatial and temporal scales, as well as across plant life stages. Moreover, I studied these herbivore effects in the context of precipitation pulses, long-term climate influences, competitive interactions, and habitat structure. I used two long-term studies that hierarchically excluded herbivores by body size over 25 years (Herbivore Exclosure Study) and 21 years (Ecotone Study), and a perennial grass seedling herbivory experiment. Native rodents and lagomorphs were especially important in determining grass cover and plant community composition in wet periods and affected perennial grass persistence over multiple life stages. Conversely, during drought, climate drove declines in perennial grass cover, promoting shrub expansion across the landscape. In that shrub-encroached state, native small mammals reinforced grass loss in part because habitat structure provided cover from predators. This research advances our understanding of an underappreciated component of ecosystem change in drylands – small mammal herbivory – and highlights the need to incorporate positive feedbacks from native small mammals into conceptual models of grassland-shrubland transitions.more » « less
-
Abstract The replacement of grasses by shrubs or bare ground (xerification) is a primary form of landscape change in drylands globally with consequences for ecosystem services. The potential for wild herbivores to trigger or reinforce shrubland states may be underappreciated, however, and comparative analyses across herbivore taxa are sparse. We sought to clarify the relative effects of domestic cattle, native rodents, native lagomorphs, and exotic African oryx (Oryx gazella) on a Chihuahuan Desert grassland undergoing shrub encroachment. We then asked whether drought periods, wet season precipitation, or interspecific grass–shrub competition modified herbivore effects to alter plant cover, species diversity, or community composition. We established a long‐term experiment with hierarchical herbivore exclosure treatments and surveyed plant foliar cover over 25 years. Cover of honey mesquite (Prosopis glandulosa) proliferated, responding primarily to climate, and was unaffected by herbivore treatments. Surprisingly, cattle and African oryx exclusion had only marginal effects on perennial grass cover at their current densities. Native lagomorphs interacted with climate to limit perennial grass cover during wet periods. Native rodents strongly decreased plant diversity, decreased evenness, and altered community composition. Overall, we found no evidence of mammalian herbivores facilitating or inhibiting shrub encroachment, but native small mammals interacting with climate drove dynamics of herbaceous plant communities. Ongoing monitoring will determine whether increased perennial grass cover from exclusion of native lagomorphs and rodents slows the transition to a dense shrubland.more » « less
-
Synopsis Tails are widespread in the animal world and play important roles in locomotor tasks, such as propulsion, maneuvering, stability, and manipulation of objects. Kangaroo rats, bipedal hopping rodents, use their tail for balancing during hopping, but the role of their tail during the vertical evasive escape jumps they perform when attacked by predators is yet to be determined. Because we observed kangaroo rats swinging their tails around their bodies while airborne following escape jumps, we hypothesized that kangaroo rats use their tails to not only stabilize their bodies while airborne, but also to perform aerial re-orientations. We collected video data from free-ranging desert kangaroo rats (Dipodomys deserti) performing escape jumps in response to a simulated predator attack and analyzed the rotation of their bodies and tails in the yaw plane (about the vertical-axis). Kangaroo rat escape responses were highly variable. The magnitude of body re-orientation in yaw was independent of jump height, jump distance, and aerial time. Kangaroo rats exhibited a stepwise re-orientation while airborne, in which slower turning periods corresponded with the tail center of mass being aligned close to the vertical rotation axis of the body. To examine the effect of tail motion on body re-orientation during a jump, we compared average rate of change in angular momentum. Rate of change in tail angular momentum was nearly proportional to that of the body, indicating that the tail reorients the body in the yaw plane during aerial escape leaps by kangaroo rats. Although kangaroo rats make dynamic 3D movements during their escape leaps, our data suggest that kangaroo rats use their tails to control orientation in the yaw plane. Additionally, we show that kangaroo rats rarely use their tail length at full potential in yaw, suggesting the importance of tail movement through multiple planes simultaneously.more » « less
-
Zhi-Yun (Ed.)Abstract Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance (FID; predator–prey distance when escape begins). Less explored is the relative orientation of an approaching predator, prey, and its eventual refuge. The relationship between an approaching threat and its refuge can be expressed as an angle we call the “interpath angle” or “Φ,” which describes the angle between the paths of predator and prey to the prey’s refuge and thus expresses the degree to which prey must run toward an approaching predator. In general, we might expect that prey would escape at greater distances if they must flee toward a predator to reach its burrow. The “race for life” model makes formal predictions about how Φ should affect FID. We evaluated the model by studying escape decisions in yellow-bellied marmots Marmota flaviventer, a species which flees to burrows. We found support for some of the model’s predictions, yet the relationship between Φ and FID was less clear. Marmots may not assess Φ in a continuous fashion; but we found that binning angle into 4 45° bins explained a similar amount of variation as models that analyzed angle continuously. Future studies of Φ, especially those that focus on how different species perceive relative orientation, will likely enhance our understanding of its importance in flight decisions.more » « less
An official website of the United States government
