skip to main content


Title: Migratory divides coincide with reproductive barriers across replicated avian hybrid zones above the Tibetan Plateau
Abstract

Migratory divides are proposed to be catalysts for speciation across a diversity of taxa. However, it is difficult to test the relative contributions of migratory behaviour vs. other divergent traits to reproductive isolation. Comparing hybrid zones with and without migratory divides offers a rare opportunity to directly examine the contribution of divergent migratory behaviour to reproductive barriers. We show that across replicate sampling transects of two pairs of barn swallow (Hirundo rustica) subspecies, strong reproductive isolation coincided with a migratory divide spanning 20 degrees of latitude. A third subspecies pair exhibited no evidence for a migratory divide and hybridised extensively. Within migratory divides, overwintering habitats were associated with assortative mating, implicating a central contribution of divergent migratory behaviour to reproductive barriers. The remarkable geographic coincidence between migratory divides and genetic breaks supports a long‐standing hypothesis that the Tibetan Plateau is a substantial barrier contributing to the diversity of Siberian avifauna.

 
more » « less
Award ID(s):
1856266 1149942
PAR ID:
10457088
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
23
Issue:
2
ISSN:
1461-023X
Format(s):
Medium: X Size: p. 231-241
Size(s):
p. 231-241
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (Hirundo rustica). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome‐wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000SNPs to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwiseFSTbetween subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome‐wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies.

     
    more » « less
  2. Abstract

    Population divergence in geographic isolation is due to a combination of factors. Natural and sexual selection may be important in shaping patterns of population differentiation, a pattern referred to as ‘isolation by adaptation’ (IBA).IBAcan be complementary to the well‐known pattern of ‘isolation by distance’ (IBD), in which the divergence of closely related populations (via any evolutionary process) is associated with geographic isolation. The barn swallowHirundo rusticacomplex comprises six closely related subspecies, where divergent sexual selection is associated with phenotypic differentiation among allopatric populations. To investigate the relative contributions of selection and geographic distance to genome‐wide differentiation, we compared genotypic and phenotypic variation from 350 barn swallows sampled across eight populations (28 pairwise comparisons) from four different subspecies. We report a draft whole‐genome sequence forH. rustica, to which we aligned a set of 9493 single nucleotide polymorphisms (SNPs). Using statistical approaches to control for spatial autocorrelation of phenotypic variables and geographic distance, we find that divergence in traits related to migratory behaviour and sexual signalling, as well as geographic distance, together explain over 70% of genome‐wide divergence among populations. Controlling forIBD, we find 42% of genomewide divergence is attributable toIBAthrough pairwise differences in traits related to migratory behaviour and sexual signalling alone. By (i) combining these results with prior studies of how selection shapes morphological differentiation and (ii) accounting for spatial autocorrelation, we infer that morphological adaptation plays a large role in shaping population‐level differentiation in this group of closely related populations.

     
    more » « less
  3. Abstract

    Disentangling the strength and importance of barriers to reproduction that arise between diverging lineages is central to our understanding of species origin and maintenance. To date, the vast majority of studies investigating the importance of different barriers to reproduction in plants have focused on short‐lived temperate taxa while studies of reproductive isolation in trees and tropical taxa are rare. Here, we systematically examine multiple barriers to reproduction in an Amazonian tree,Protium subserratum(Burseraceae) with diverging lineages of soil specialist ecotypes. Using observational, molecular, distributional, and experimental data, we aimed to quantify the contributions of individual prezygotic and postzygotic barriers including ecogeographic isolation, flowering phenology, pollinator assemblage, pollen adhesion, pollen germination, pollen tube growth, seed development, and hybrid fitness to total reproductive isolation between the ecotypes. We were able to identify five potential barriers to reproduction including ecogeographic isolation, phenological differences, differences in pollinator assemblages, differential pollen adhesion, and low levels of hybrid seed development. We demonstrate that ecogeographic isolation is a strong and that a combination of intrinsic and extrinsic prezygotic and postzygotic barriers may be acting to maintain near complete reproductive isolation between edaphically divergent populations of the tropical tree,P. subserratum.

     
    more » « less
  4. Abstract

    Divergent migratory strategies among populations can result in population‐level differences in timing of reproduction (allochrony) and local adaptation. However, the mechanisms underlying among‐population variation in timing are insufficiently understood, particularly in females.

    We studied differences in reproductive development and its related mechanisms along the hypothalamic–pituitary–gonadal axis (HPG) in closely related migratory and sedentary (i.e. resident) female dark‐eyed juncos (Junco hyemalis) living together in sympatry during early spring. Despite exposure to the same environmental cues in early spring, residents initiate breeding prior to the departure of migrants for their breeding grounds. We investigated whether residents would be more reproductively developed than migrants based on their behavioural differences. Alternatively, females could exhibit similar reproductive development in response to the same environmental cues despite differences in migratory behaviour. To compare their degree of reproductive development during seasonal sympatry and the underlying mechanisms of these differences, we collected ovarian and liver tissue in early spring prior to migration and compared transcript abundance of genes associated with reproduction using quantitative PCR. We also used stable hydrogen isotopes to infer relative breeding and wintering latitude of migrants.

    We found higher transcript abundance of luteinizing hormone receptor and aromatase in the ovary in addition to significantly heavier ovaries in residents than in migrants. Together, these results suggest greater sensitivity and response to upstream endocrine stimulation in resident females. Transcript abundance for other receptors in the ovary and liver associated with reproduction, however, did not differ between populations. When comparing ovarian development within migrants, females with lower hydrogen isotopes (indicating higher breeding latitudes) had smaller ovaries, suggesting that longer‐distance migrations may further delay reproductive development.

    Based on differences in ovary mass and transcript abundance, we conclude that females that differ in migratory strategy also differ in timing of reproductive development. These results support that divergent migratory behaviour drives allochrony and could enable reproductive isolation between populations; mechanistic differences at the level of gonadal stimulation can explain these differences in timing of reproductive development.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  5. Abstract

    Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between thealbaandpersonatasubspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437SNPloci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome‐wide divergence. Variation in only one trait—head plumage patterning—was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome‐wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution.

     
    more » « less