SUMMARY Despite progress in tomographic imaging of Earth's interior, a number of critical questions regarding the large-scale structure and dynamics of the mantle remain outstanding. One of those questions is the impact of phase-boundary undulations on global imaging of mantle heterogeneity and on geodynamic (i.e. convection-related) observables. To address this issue, we developed a joint seismic-geodynamic-mineral physical tomographic inversion procedure that incorporates lateral variations in the depths of the 410- and 660-km discontinuities. This inversion includes S-wave traveltimes, SS precursors that are sensitive to transition-zone topography, geodynamic observables/data (free-air gravity, dynamic surface topography, horizontal divergence of tectonic plates and excess core-mantle boundary ellipticity) and mineral physical constraints on thermal heterogeneity. Compared to joint tomography models that do not include data sensitivity to phase-boundary undulations in the transition zone, the inclusion of 410- and 660-km topography strongly influences the inference of volumetric anomalies in a depth interval that encompasses the transition zone and mid-mantle. It is notable that joint tomography inversions, which include constraints on transition-zone discontinuity topography by seismic and geodynamic data, yield more pronounced density anomalies associated with subduction zones and hotspots. We also find that the inclusion of 410- and 660-km topography may improve the fit to the geodynamic observables, depending on the weights applied to seismic and geodynamic data in the inversions. As a consequence, we find that the amplitude of non-thermal density anomalies required to explain the geodynamic data decreases in most of the mantle. These findings underline the sensitivity of the joint inversions to the inclusion of transition-zone complexity (e.g. phase-boundary topography) and the implications for the inferred non-thermal density anomalies in these depth regions. Finally, we underline that our inferences of 410- and 660-km topography avoid a commonly employed approximation that represents the contribution of volumetric heterogeneity to SS-wave precursor data. Our results suggest that this previously employed correction, based on a priori estimates of upper-mantle heterogeneity, might be a significant source of error in estimating the 410- and 660-km topography.
more »
« less
Heterogeneity of Seismic Wave Velocity in Earth's Mantle
Seismology provides important constraints on the structure and dynamics of the deep mantle. Computational and methodological advances in the past two decades improved tomographic imaging of the mantle and revealed the fine-scale structure of plumes ascending from the core-mantle boundary region and slabs of oceanic lithosphere sinking into the lower mantle. We discuss the modeling aspects of global tomography including theoretical approximations, data selection, and model fidelity and resolution. Using spectral, principal component, and cluster analyses, we highlight the robust patterns of seismic heterogeneity, which inform us of flow in the mantle, the history of plate motions, and potential compositionally distinct reservoirs. In closing, we emphasize that data mining of vast collections of seismic waveforms and new data from distributed acoustic sensing, autonomous hydrophones, ocean-bottom seismometers, and correlation-based techniques will boost the development of the next generation of global models of density, seismic velocity, and attenuation. ▪ Seismic tomography reveals the 100-km to 1,000-km scale variation of seismic velocity heterogeneity in the mantle. ▪ Tomographic images are the most important geophysical constraints on mantle circulation and evolution.
more »
« less
- Award ID(s):
- 1644829
- PAR ID:
- 10215604
- Date Published:
- Journal Name:
- Annual Review of Earth and Planetary Sciences
- Volume:
- 48
- Issue:
- 1
- ISSN:
- 0084-6597
- Page Range / eLocation ID:
- 377 to 401
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite progress in tomographic imaging of Earth’s interior, a number of critical questions regarding the large-scale structure and dynamics of the mantle remain outstanding. One of those questions is the impact of phase-boundary undulations on global imaging of mantle heterogeneity and on geodynamic (i.e. convection-related) observables. To address this issue, we developed a joint seismic-geodynamic-mineral physical tomographic inversion procedure that incorporates lateral variations in the depths of the 410- and 660-km discontinuities. This inversion includes S-wave traveltimes, SS precursors that are sensitive to transition-zone topography, geodynamic observables/data (free-air gravity, dynamic surface topography, horizontal divergence of tectonic plates and excess core-mantle boundary ellipticity) and mineral physical constraints on thermal heterogeneity. Compared to joint tomography models that do not include data sensitivity to phase-boundary undulations in the transition zone, the inclusion of 410- and 660-km topography strongly influences the inference of volumetric anomalies in a depth interval that encompasses the transition zone and mid-mantle. It is notable that joint tomography inversions, which include constraints on transition-zone discontinuity topography by seismic and geodynamic data, yield more pronounced density anomalies associated with subduction zones and hotspots. We also find that the inclusion of 410- and 660-km topography may improve the fit to the geodynamic observables, depending on the weights applied to seismic and geodynamic data in the inversions. As a consequence, we find that the amplitude of non-thermal density anomalies required to explain the geodynamic data decreases in most of the mantle. These findings underline the sensitivity of the joint inversions to the inclusion of transition-zone complexity (e.g. phase-boundary topography) and the implications for the inferred non-thermal density anomalies in these depth regions. Finally, we underline that our inferences of 410- and 660-km topography avoid a commonly employed approximation that represents the contribution of volumetric heterogeneity to SS-wave precursor data. Our results suggest that this previously employed correction, based on a priori estimates of uppermantle heterogeneity, might be a significant source of error in estimating the 410- and 660-km topography.more » « less
-
Abstract Continent‐scale observations of seismic phenomena have provided multi‐scale constraints of the Earth's interior. Of those analyzed, array‐based observations of slowness vector properties (backazimuth and horizontal slowness) and multipathing have yet to be made on a continental scale. Slowness vector measurements give inferences on mantle heterogeneity properties such as velocity perturbation and velocity gradient strength and quantify their effect on the wavefield. Multipathing is a consequence of waves interacting with strong velocity gradients resulting in two arrivals with different slowness vector properties and times. The mantle structure beneath the contiguous Unites States has been thoroughly analyzed by previous seismic studies and is data‐rich, making it an excellent testing ground to both analyze mantle structure with our approach and compare with other imaging techniques. We apply an automated array‐analysis technique to an SKS data set to create the first continent‐scale data set of multipathing and slowness vector measurements. We analyze the divergence of the slowness vector deviation field to highlight seismically slow and fast regions. Our results resolve several slow mantle anomalies beneath Yellowstone, the Appalachian mountains and fast anomalies throughout the mantle. Many of the anomalies cause multipathing in frequency bands 0.15–0.30 and 0.20–0.40 Hz which suggests velocity transitions over at most 500 km exist. Comparing our observations to synthetics created from tomography models, we find model NA13 (Bedle et al., 2021,https://doi.org/10.1029/2021GC009674) fits our data best but differences still remain. We therefore suggest slowness vector measurements should be used as an additional constraint in tomographic inversions and will lead to better resolved models of the mantle.more » « less
-
SUMMARY Differences between P- and S-wave models have been frequently used as evidence for the presence of large-scale compositional heterogeneity in the Earth's mantle. Our two-step machine learning (ML) analysis of 28 P- and S-wave global tomographic models reveals that, on a global scale, such differences are for the most part not intrinsic and could be reduced by changing the models in their respective null spaces. In other words, P- and S-wave images of mantle structure are not necessarily distinct from each other. Thus, a purely thermal explanation for large-scale seismic structure is sufficient at present; significant mantle compositional heterogeneities do not need to be invoked. We analyse 28 widely used tomographic models based on various theoretical approximations ranging from ray theory (e.g. UU-P07 and MIT-P08), Born scattering (e.g. DETOX) and full-waveform techniques (e.g. CSEM and GLAD). We apply Varimax principal component analysis to reduce tomography model dimensionality by 83 percent, while preserving relevant information (94 percent of the original variance), followed by hierarchical clustering (HC) analysis using Ward's method to quantitatively categorize all models into hierarchical groups based on similarities. We found two main tomography model clusters: Cluster 1, which we called ‘Pure P wave’, is composed of six P-wave models that only use longitudinal body wave phases (e.g. P, PP and Pdiff); and Cluster 2, which we called ‘Mixed’, includes both P- and S-wave models. P-wave models in the ‘Mixed’ cluster use inversion methods that include inputs from other geophysical and geological data sources, and this causes them to be more similar to S-wave models than Pure P-wave models without significant loss of fitness to P-wave data. Given that inclusion of new data classes and seismic phases in more recent tomographic models significantly changes imaged seismic structure, our ML assessment of global tomography model similarity may improve selection of appropriate P- and S-wave models for future global tomography comparative studies.more » « less
-
Abstract Seismic tomography has demonstrated that the shear‐wave velocity is relatively high over a 3,000‐km wide region in the lowermost mantle beneath southern and eastern Asia. This seismic anomaly demarcates the current position of slab remnants that may have subducted in the Cretaceous. To further characterize the seismic structure at smaller scales, we measure 929 residual travel time differences (δt) between the phasesScSandSusing recordings of eight earthquakes beneath the Indian Ocean at stations from the Chinese Digital Seismic Network. We interpret variations of δtup to 10 s as due to horizontal shear‐velocity variations in D″ beneath northern India, Nepal, and southwestern China. The shear velocity can vary by as much as 7% over distances shorter than 300 km. Our observations provide additional observational evidence that compositional heterogeneity and possibly melt contribute to the seismic structure of the lower mantle characterized by long‐term subduction and mantle downwelling.more » « less
An official website of the United States government

