Abstract Dry deposition could partially explain the observed response in ambient ozone to extreme hot and dry episodes. We examine the response of ozone deposition to heat and dry anomalies using three long‐term co‐located ecosystem‐scale carbon dioxide, water vapor and ozone flux measurement records. We find that, as expected, canopy stomatal conductance generally decreases during days with dry air or soil. However, during hot days, concurrent increases in non‐stomatal conductance are inferred at all three sites, which may be related to several temperature‐sensitive processes not represented in the current generation of big‐leaf models. This may offset the reduction in stomatal conductance, leading to smaller net reduction, or even net increase, in total deposition velocity. We find the response of deposition velocity to soil dryness may be related to its impact on photosynthetic activity, though considerable variability exists. Our findings emphasize the need for better understanding and representation of non‐stomatal ozone deposition.
more »
« less
Spatiotemporal Controls on Observed Daytime Ozone Deposition Velocity Over Northeastern U.S. Forests During Summer
Abstract Spatiotemporal variability in ozone dry deposition is often overlooked despite its implications for interpreting and modeling tropospheric ozone concentrations accurately. Understanding the influences of stomatal versus nonstomatal deposition processes on ozone deposition velocity is important for attributing observed changes in the ozone depositional sink and associated damage to ecosystems. Here, we aim to identify the stomatal versus nonstomatal deposition processes driving observed variability in ozone deposition velocity over the northeastern United States during June–September. We use ozone eddy covariance measurements from Harvard Forest in Massachusetts, which span a decade, and from Kane Experimental Forest in Pennsylvania and Sand Flats State Forest in New York, which span one growing season each, along with observation‐driven modeling. Using a cumulative precipitation indicator of soil wetness, we infer that high soil uptake during dry years and low soil uptake during wet years may contribute to the twofold interannual variability in ozone deposition velocity at Harvard Forest. We link stomatal deposition and humidity to variability in ozone deposition velocity on daily timescales. The humidity dependence may reflect higher uptake by leaf cuticles under humid conditions, noted in previous work. Previous work also suggests that uptake by leaf cuticles may be enhanced after rain, but we find that increases in ozone deposition velocity on rainy days are instead mostly associated with increases in stomatal conductance. Our analysis highlights a need for constraints on subseasonal variability in ozone dry deposition to soil and fast in‐canopy chemistry during ecosystem stress.
more »
« less
- Award ID(s):
- 1832210
- PAR ID:
- 10457116
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 124
- Issue:
- 10
- ISSN:
- 2169-897X
- Page Range / eLocation ID:
- p. 5612-5628
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dry deposition, the second largest removal process of ozone (O3) in the troposphere, plays a role in controlling the natural variability of surface O3concentrations. Terrestrial ecosystems remove O3either through stomatal uptake or nonstomatal processes. In chemical transport models, nonstomatal pathways are roughly constrained and may not correctly capture total O3loss. To address this, the first simultaneous eddy covariance measurements of O3and formic acid (HCOOH), a tracer of in‐canopy oxidation of biogenic terpenes, were made in a mixed temperate forest in Northern Wisconsin. Daytime maximum O3deposition velocities,vd(O3), ranged between 0.5 and 1.2 cm s−1. Comparison of observedvd(O3) with observationally constrained estimates of stomatal uptake and parameterized estimates of cuticular and soil uptake reveal a large (10%–90%) residual nonstomatal contribution tovd(O3). The residual downward flux of O3was well correlated with measurements of HCOOH upward flux, suggesting unaccounted for in‐canopy gas‐phase chemistry.more » « less
-
The northeastern U.S. has experienced a rapid rise in extreme precipitation events and total precipitation due to climate change. Despite higher overall precipitation, long-term near-surface soil moisture at the Harvard Forest in Petersham, MA has decreased since 2010, a pattern also observed in other global temperate forest regions. In this study, we used more than thirty years of ecosystem-atmosphere water and carbon exchange at the Harvard Forest to understand the impact of precipitation extremes during the past decade on ecosystem water and carbon fluxes and the strength of land-atmosphere coupling. We found that in this mesic temperate forest, well-drained post-glacial soils rapidly drain surplus moisture from large rain events, while the remaining moisture necessary to preserve local humidity is quickly lost to evapotranspiration unless frequently replenished by rainfall. This region has also experienced two hot summer droughts during the past decade, causing further hydrological stress with carbon cycle implications. Furthermore, meteorological conditions in the nongrowing season have particularly shifted to warmer, drier conditions that set the stage for more frequent summer soil moisture deficits. In response to this past decade of hydrological extremes, we have observed a dampening of canopy light response curves, indicating lower rates of carbon uptake during the growing season and a parallel decline in ecosystem respiration as soils dry. More frequent dry conditions during key phenological windows, the intense delivery of rainfall during a shorter temporal window in the growing season, and rising summer temperatures and lower humidity have combined to decrease the ecosystem carbon uptake by photosynthesis and created large interannual variation in the strength of the net carbon sink at Harvard Forest during the past decade compared to the prior two decades of this study.more » « less
-
Abstract The loss of ozone to terrestrial and aquatic systems, known as dry deposition, is a highly uncertain process governed by turbulent transport, interfacial chemistry, and plant physiology. We demonstrate the value of using Deep Neural Networks (DNN) in predicting ozone dry deposition velocities. We find that a feedforward DNN trained on observations from a coniferous forest site (Hyytiälä, Finland) can predict hourly ozone dry deposition velocities at a mixed forest site (Harvard Forest, Massachusetts) more accurately than modern theoretical models, with a reduction in the normalized mean bias (0.05 versus ~0.1). The same DNN model, when driven by assimilated meteorology at 2° × 2.5° spatial resolution, outperforms the Wesely scheme as implemented in the GEOS‐Chem model. With more available training data from other climate and ecological zones, this methodology could yield a generalizable DNN suitable for global models.more » « less
-
Abstract Sources of neurotoxic mercury in forests are dominated by atmospheric gaseous elemental mercury (GEM) deposition, but a dearth of direct GEM exchange measurements causes major uncertainties about processes that determine GEM sinks. Here we present three years of forest-level GEM deposition measurements in a coniferous forest and a deciduous forest in northeastern USA, along with flux partitioning into canopy and forest floor contributions. Annual GEM deposition is 13.4 ± 0.80 μg m−2(coniferous forest) and 25.1 ± 2.4 μg m−2(deciduous forest) dominating mercury inputs (62 and 76% of total deposition). GEM uptake dominates in daytime during active vegetation periods and correlates with CO2assimilation, attributable to plant stomatal uptake of mercury. Non-stomatal GEM deposition occurs in the coniferous canopy during nights and to the forest floor in the deciduous forest and accounts for 24 and 39% of GEM deposition, respectively. Our study shows that GEM deposition includes various pathways and is highly ecosystem-specific, which complicates global constraints of terrestrial GEM sinks.more » « less
An official website of the United States government
