Abstract The degassing of CO2and S from arc volcanoes is fundamentally important to global climate, eruption forecasting, ore deposits, and the cycling of volatiles through subduction zones. However, all existing thermodynamic/empirical models have difficulties reproducing CO2‐H2O‐S trends observed in melt inclusions and provide widely conflicting results regarding the relationships between pressure and CO2/SO2in the vapor. In this study, we develop an open‐source degassing model, Sulfur_X, to track the evolution of S, CO2, H2O, and redox states in melt and vapor in ascending mafic‐intermediate magma. Sulfur_X describes sulfur degassing by parameterizing experimentally derived sulfur partition coefficients for two equilibria: RxnI. FeS (m) + H2O (v) H2S (v) + FeO (m), and RxnII. CaSO4(m) SO2(v) + O2(v) + CaO (m), based on the sulfur speciation in the melt (m) and co‐existing vapor (v). Sulfur_X is also the first to track the evolution offO2and sulfur and iron redox states accurately in the system using electron balance and equilibrium calculations. Our results show that a typical H2O‐rich (4.5 wt.%) arc magma with high initial S6+/ΣS ratio (>0.5) will degas much more (∼2/3) of its initial sulfur at high pressures (>200 MPa) than H2O‐poor ocean island basalts with low initial S6+/ΣS ratio (<0.1), which will degas very little sulfur until shallow pressures (<50 MPa). The pressure‐S relationship in the melt predicted by Sulfur_X provides new insights into interpreting the CO2/STratio measured in high‐T volcanic gases in the run‐up to the eruption.
more »
« less
Carbon Fluxes and Primary Magma CO 2 Contents Along the Global Mid‐Ocean Ridge System
Abstract The concentration of carbon in primary mid‐ocean ridge basalts (MORBs), and the associated fluxes of CO2outgassed at ocean ridges, is examined through new data obtained by secondary ion mass spectrometry (SIMS) on 753 globally distributed MORB glasses. MORB glasses are typically 80–90% degassed of CO2. We thus use the limited range in CO2/Ba (81.3 ± 23) and CO2/Rb (991 ± 129), derived from undegassed MORB and MORB melt inclusions, to estimate primary CO2concentrations for ridges that have Ba and/or Rb data. When combined with quality‐controlled volatile‐element data from the literature (n = 2,446), these data constrain a range of primary CO2abundances that vary from 104 ppm to 1.90 wt%. Segment‐scale data reveal a range in MORB magma flux varying by a factor of 440 (from 6.8 × 105to 3.0 × 108m3/year) and an integrated global MORB magma flux of 16.5 ± 1.6 km3/year. When combined with CO2/Ba and CO2/Rb‐derived primary magma CO2abundances, the calculated segment‐scale CO2fluxes vary by more than 3 orders of magnitude (3.3 × 107to 4.0 × 1010mol/year) and sum to an integrated global MORB CO2flux of × 1012mol/year. Variations in ridge CO2fluxes have a muted effect on global climate; however, because the vast majority of CO2degassed at ridges is dissolved into seawater and enters the marine bicarbonate cycle. MORB degassing would thus only contribute to long‐term variations in climate via degassing directly into the atmosphere in shallow‐water areas or where the ridge system is exposed above sea level.
more »
« less
- Award ID(s):
- 1634421
- PAR ID:
- 10457135
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 20
- Issue:
- 3
- ISSN:
- 1525-2027
- Format(s):
- Medium: X Size: p. 1387-1424
- Size(s):
- p. 1387-1424
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Southern Ocean (SO) connects major ocean basins and hosts large air‐sea carbon fluxes due to the resurfacing of deep nutrient and carbon‐rich waters. While wind‐induced turbulent mixing in the SO mixed layer is significant for air‐sea fluxes, the importance of the orders‐of‐magnitude weaker background mixing below is less well understood. The direct impact of altering background mixing on tracers, as opposed to the response due to a longer‐term change in large‐scale ocean circulation, is also poorly studied. Topographically induced upward propagating lee waves, wind‐induced downward propagating waves generated at the base of the mixed layer, shoaling of southward propagating internal tides, and turbulence under sea ice are among the processes known to induce upper ocean background turbulence but typically are not represented in models. Here, we show that abruptly altering the background mixing in the SO over a range of values typically used in climate models (m2 s−1–m2 s−1) can lead to a ∼70% change in annual SO air‐sea CO2fluxes in the first year of perturbations, and around a ∼40% change in annual SO air‐sea CO2fluxes over the 6‐year duration of the experiment, with even greater changes on a seasonal timescale. This is primarily through altering the temperature and the dissolved inorganic carbon and alkalinity distribution in the surface water. Given the high spatiotemporal variability of processes that induce small‐scale background mixing, this work demonstrates the importance of their representation in climate models for accurate simulation of global biogeochemical cycles.more » « less
-
Abstract Collectively, reservoirs constitute a significant global source of C‐based greenhouse gases (GHGs). Yet, global estimates of reservoir carbon dioxide (CO2) and methane (CH4) emissions remain uncertain, varying more than four‐fold in recent analyses. Here we present results from a global application of the Greenhouse Gas from Reservoirs (G‐res) model wherein we estimate per‐area and per‐reservoir CO2and CH4fluxes, by specific flux pathway and in a spatially and temporally explicit manner, as a function of reservoir characteristics. We show: (a) CH4fluxes via degassing and ebullition are much larger than previously recognized and diffusive CH4fluxes are lower than previously estimated, while CO2emissions are similar to those reported in past work; (b) per‐area reservoir GHG fluxes are >29% higher than suggested by previous studies, due in large part to our novel inclusion of the degassing flux in our global estimate; (c) CO2flux is the dominant emissions pathway in boreal regions and CH4degassing and ebullition are dominant in tropical and subtropical regions, with the highest overall reservoir GHG fluxes in the tropics and subtropics; and (d) reservoir GHG fluxes are quite sensitive to input parameters that are both poorly constrained and likely to be strongly influenced by climate change in coming decades (parameters such as temperature and littoral area, where the latter may be expanded by deepening thermoclines expected to accompany warming surface waters). Together these results highlight a critical need to both better understand climate‐related drivers of GHG emission and to better quantify GHG emissions via CH4ebullition and degassing.more » « less
-
Abstract Potassium (K) informs on the radiogenic heat production, atmospheric composition, and volatile element depletion of the Earth and other planetary systems. Constraints on the abundance of K in the Earth, Moon, and other rocky bodies have historically hinged on K/U values measured in planetary materials, particularly comparisons of the continental crust and mid‐ocean ridge basalts (MORBs), for developing compositional models of the bulk silicate Earth (BSE). However, a consensus on the most representative K/U value for global MORB remains elusive despite numerous studies. Here, we statistically analyze a critical compilation of MORB data to determine the K/U value of the MORB source. Covariations in the log‐normal abundances of K and U establish that K is 3–7 times less incompatible than U during melting and/or crystallization processes, enabling inverse modeling to infer the K/U of the MORB source region. These comprehensive data have a mean K/U for global MORB = 13,900 ± 200 (2σm;n = 4,646), and define a MORB source region with a K/U between 14,000 and 15,500, depending on the modeled melting regime. However, this range represents strictly a lower limit due to the undefined role of fractional crystallization in these samples and challenges preserving the signatures of depleted components in the MORB mantle source. This MORB source model, when combined with recent metadata analyses of ocean island basalt (OIB) and continental crust, suggests that the BSE has a K/U value >12,100 and contains >260 × 10−6 kg/kg K, resulting in a global production of∼3.5 TW of radiogenic heat today and 1.5 × 1017 kg of40Ar over the lifetime of the planet.more » « less
-
Abstract The Tocantins River contributes ∼5% of the total flux of water to the Amazon River plume in the Atlantic Ocean. Here, we evaluate monthly variability in the composition and abundance of carbon, nitrogen, and suspended sediment in the lower reaches of the Tocantins River from 2014 to 2016. Dissolved organic carbon concentrations generally increased during periods of high discharge and are ∼1.5 times lower than average concentrations at the mouth of the Amazon River. Dissolved inorganic carbon similarly increased during periods of high discharge. Total dissolved nitrogen and individual nitrogen species followed a similar temporal pattern, increasing during high water.predominated the dissolved inorganic nitrogen pool, followed by, and, characteristic of environments with a relatively low anthropogenic impact. Dissolved fractions represented 92% of the total carbon exported and 78% of the total nitrogen exported. The suspended particulate sediment flux was 2.72 × 106 t yr−1, with fine suspended sediment dominating (71.3%). Concentrations of carbon relative to nitrogen indicate a primarily terrigenous source of organic matter and CO2derived from in situ respiration of this material during the rainy season and a primarily algal/bacterial source of organic matter during the dry season. Considering past estimates of dissolved carbon and nitrogen fluxes from the Amazon River to the Atlantic Ocean, the Tocantins River contributes 3% and 3.7% to total fluxes to the Amazon River plume region, respectively. While this contribution is relatively small, it may be influenced by future changes to the basin's land use and hydrology.more » « less