skip to main content


Title: Seasonal Flooding Causes Intensification of the River Breeze in the Central Amazon
Abstract

In the central Amazon, surrounding Manaus City, Brazil, the landscape dominated by forest and water bodies supports development of river breezes. Seasonal inundations modify this local scenery affecting, consequently, the local circulations. However, this effect has not properly been investigated yet. Thus, we carried out numerical experiments for a river breeze case to investigate the seasonal flooding effect on the river breeze and detail the processes involved in the river breeze development. In the numerical experiments, we ran the Catchment‐Based Macro‐scale Floodplain (CaMa‐Flood) model to simulate flooding depth and extent and used the CaMa‐Flood outputs to force the Ocean‐Land‐Atmosphere Model. The seasonal flooding alters the surface energy partitioning causing a temperature decrease over the river region and intensification of the river breezes in the daytime. The intensified river breezes propagate more rapidly through the upland region, take longer to dissipate and promote stronger upward vertical motion altering the heat and mass transport. These novel findings are fundamentally important to the understanding of the local climate variability of the central Amazon. We can infer that river breezes and its consequence to local climate are less (more) pronounced in drought (wet) years.

 
more » « less
NSF-PAR ID:
10457137
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
124
Issue:
10
ISSN:
2169-897X
Page Range / eLocation ID:
p. 5178-5197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydropower dams have received increased global attention due to their detrimental socioenvironmental ramifications. Such attention has led to an increase in studies on the impacts of reservoir operation on river flow; however, a holistic understanding of the compounded effects of hydropower dams on different hydrological characteristics is lacking, especially for large river basins such as the Amazon where hydropower development is on the rise. Here, we mechanistically quantify the historical impacts of existing dams and the potential impacts of the collective operation of existing and planned dams on a basin‐wide scale in the Amazon for the 1981–2019 period. We build on the recently developed high‐resolution (3‐arcmin; ∼5 km) river‐floodplain‐reservoir model, the CaMa‐Flood‐Dam, which is enhanced to realistically simulate hydropower dam operation considering maximized power production. Flood simulations are further downscaled to 3 arc‐seconds (∼90 m) resolution to investigate the impacts of dams on fine‐scale flood dynamics across the basin. Results indicate that existing dams have substantially altered downstream river flow and flooding patterns across the Amazon River basin. Specifically, large dams in the Amazonian subbasins, including the Xingu, Madeira, and Tocantins, have altered downstream river flow amplitude by up to 3 orders of magnitude. Further, the collective operation of existing and planned dams could increasingly alter river flow patterns, causing ∼10% decrease in flood duration in many parts of the Amazon mainstem. Our results provide quantitative evidence on the severity of the hydrologic impacts of large hydropower dams and have important implications for sustainable hydropower operation and development in the Amazon and worldwide.

     
    more » « less
  2. Abstract

    Understanding the hydroclimate representations of precipitationδ18O (δ18Op) in tropical South America (TSA) is crucial for climate reconstruction from available speleothem caves. Our preceding study (Part I) highlights a heterogeneous response in millennial hydroclimate over the TSA during the last deglaciation (20–11 ka before present), characterized by a northwest–southeast (NW–SE) dipole in both rainfall andδ18Op, with opposite signs between central-western Amazon and eastern Brazil. Mechanisms of suchδ18Opdipole response are further investigated in this study with the aid of moisture tagging simulations. In response to increased meltwater discharge, the intertropical convergence zone (ITCZ) migrates southward, causing a moisture source location shift and depleting the isotopic value of the vapor transported into eastern Brazil, which almost entirely contributes to theδ18Opdepletion in eastern Brazil (SE pole). In contrast, the moisture source location change and local condensation change (due to the lowering convergence level and increased rain reevaporation in unsaturated subcloud layers) contribute nearly equally to theδ18Openrichment in the central-western Amazon (NW pole). Therefore, although a clear inverse relationship betweenδ18Opand rainfall in both dipole regions seems to support the “amount effect,” we argue that the local rainfall amount only partially interprets the millennialδ18Opchange in the central-western Amazon, whileδ18Opdoes not document local rainfall change in eastern Brazil. Thus, the paleoclimate community should be cautious when usingδ18Opas a proxy for past local precipitation in the TSA region. Finally, we discuss the discrepancy between the model and speleothem proxies on capturing the millennialδ18Opdipole response and pose a challenge in reconciling the discrepancy.

    Significance Statement

    We want to comprehensively understand the hydroclimate footprints ofδ18Opand the mechanisms of the millennial variability ofδ18Opover tropical South America with the help of water tagging experiments performed by the isotope-enabled Community Earth System Model (iCESM). We argue that the millennialδ18Opchange in eastern Brazil mainly documents the moisture source location change associated with ITCZ migration and the change of the isotopic value of the incoming water vapor, instead of the local rainfall amount. In contrast, the central-western Amazon partially documents the moisture source location shift and local precipitation change. Our study cautions that one should not simply resort to the isotopic “amount effect” to reconstruct past precipitation in tropical regions without studying the mechanisms behind it.

     
    more » « less
  3. Abstract

    Numerous studies have examined the changes in streamflow in the Mekong River Basin (MRB) using observations and hydrological modeling; however, there is a lack of integrated modeling studies that explicitly simulate the natural and human‐induced changes in flood dynamics over the entire basin. Here we simulate the river‐floodplain‐reservoir inundation dynamics over the MRB for 1979–2016 period using a newly integrated, high‐resolution (~5 km) river hydrodynamics‐reservoir operation model. The framework is based on the river‐floodplain hydrodynamic model CaMa‐Flood in which a new reservoir operation scheme is incorporated by including 86 existing MRB dams. The simulated flood extent is downscaled to a higher resolution (~90 m) to investigate fine‐scale inundation dynamics, and results are validated with ground‐ and satellite‐based observations. It is found that the historical variations in surface water storage have been governed primarily by climate variability; the impacts of dams on river‐floodplain hydrodynamics were marginal until 2009. However, results indicate that the dam impacts increased noticeably in 2010 when the basin‐wide storage capacity doubled due to the construction of new mega dams. Further, results suggest that the future flood dynamics in the MRB would be considerably different than in the past even without climate change and additional dams. However, it is also found that the impacts of dams can largely vary depending on reservoir operation strategies. This study is expected to provide the basis for high‐resolution river‐floodplain‐reservoir modeling for a holistic assessment of the impacts of dams and climate change on the floodpulse‐dependent hydro‐ecological systems in the MRB and other global regions.

     
    more » « less
  4. Abstract

    We develop a space‐time Bayesian hierarchical modeling (BHM) framework for two flood risk attributes—seasonal daily maximum flow and the number of events that exceed a threshold during a season (NEETM)—at a suite of gauge locations on a river network. The model uses generalized extreme value (GEV) and Poisson distributions as marginals for these flood attributes with non‐stationary parameters. The rate parameters of the Poisson distribution and location, scale, and shape parameters of the GEV are modeled as linear functions of suitable covariates. Gaussian copulas are applied to capture the spatial dependence. The best covariates are selected using the Watanabe‐Akaike information criterion (WAIC). The modeling framework results in the posterior distribution of the flood attributes at all the gauges and various lead times. We demonstrate the utility of this modeling framework to forecast the flood risk attributes during the summer peak monsoon season (July‐August) at five gauges in the Narmada River basin (NRB) of West‐Central India for several lead times (0–3 months). As potential covariates, we consider climate indices such as El Niño–Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Pacific Warm Pool Region (PWPR) from antecedent seasons, which have shown strong teleconnections with the Indian monsoon. We also include new indices related to the East Pacific and West Indian Ocean regions depending on the lead times. We show useful long lead skill from this modeling approach which has a strong potential to enable robust risk‐based flood mitigation and adaptation strategies 3 months before flood occurrences.

     
    more » « less
  5. Abstract

    Flooding is a function of hydrologic, climatologic, and land use characteristics. However, the relative contribution of these factors to flood risk over the long-term is uncertain. In response to this knowledge gap, this study quantifies how urbanization and climatological trends influenced flooding in the greater Houston region during Hurricane Harvey. The region—characterized by extreme precipitation events, low topographic relief, and clay-dominated soils—is naturally flood prone, but it is also one of the fastest growing urban areas in the United States. This rapid growth has contributed to increased runoff volumes and rates in areas where anthropogenic climate changes has also been shown to be contributing to extreme precipitation. To disentangle the relative contributions of urban development and climatic changes on flooding during Hurricane Harvey, we simulate catchment response using a spatially-distributed hydrologic model under 1900 and 2017 conditions. This approach provides insight into how timing, volume, and peak discharge in response to Harvey-like events have evolved over more than a century. Results suggest that over the past century, urban development and climate change have had a large impact on peak discharge at stream gauges in the Houston region, where development alone has increased peak discharges by 54% (±28%) and climate change has increased peak discharge by about 20% (±3%). When combined, urban development and climate change nearly doubled peak discharge (84% ±35%) in the Houston area during Harvey compared to a similar event in 1900, suggesting that land use change has magnified the effects of climate change on catchment response. The findings support a precautionary approach to flood risk management that explicitly considers how current land use decisions may impact future conditions under varying climate trends, particularly in low-lying coastal cities.

     
    more » « less