skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Validation of Models for Net Deployment and Capture Simulation with Experimental Data
This work validates lumped-parameter models and cable-based models for nets against data from a parabolic flight experiment. The capabilities of a simulator based in Vortex Studio, a multibody dynamics simulation framework, are expanded by introducing i) a lumped-parameter model of the net with lumped masses placed along the threads and ii) a flexible-cable-based model, both of which enable collision detection with thin bodies. An experimental scenario is recreated in simulation, and the deployment and capture phases are analyzed. Good agreement with experiments is observed in both phases, although with differences primarily due to imperfect knowledge of experimental initial conditions. It is demonstrated that both a lumped-parameter model with inner nodes and a cable-based model can enable the detection of collisions between the net and thin geometries of the target. While both models improve notably capture realism compared to a lumped parameter model with no inner nodes, the cable-based model is found to be most computationally efficient. The effect of modeling thread-to-thread collisions (i.e., collisions among parts of the net) is analyzed and determined to be negligible during deployment and initial target wrapping. The results of this work validate the models and increase the confidence in the practicality of this simulator as a tool for research on net-based capture of debris. A cable-based model is validated for the first time in the literature.  more » « less
Award ID(s):
2128578
PAR ID:
10457352
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Spacecraft and Rockets
ISSN:
0022-4650
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One of the most promising solutions to the issue of the increasing amount of space debris orbiting the Earth is net-based Active Debris Removal. For accurate contact detection of thin target geometries with lumped-parameter modeled nets in simulations, many nodes (possibly 10 or more) must be introduced along threads. However, such introduction significantly increases the computational cost of simulations. This work proposes a modeling approach that introduces additional nodes during the deployment phase of the simulation rather than at the beginning to reduce such costs. The approach conserves the net’s total linear momentum and adheres to the work-energy principle when employed mid-simulation. Through both quantitative and qualitative comparisons of nets with and without model switching, this work demonstrates that the methodology does not alter the overall dynamics of the net flight toward the target in a significant way. Capture simulations of a scaled-down Envisat satellite model are performed, where the introduction of model switching results in approx. 2.45 times faster simulation without compromising accuracy in the representation of capture. 
    more » « less
  2. Dielectric elastomers (DEs) are electro-active polymers that deform and change their shape when an electric field is applied across them. They are used as soft actuators since they are flexible, resilient, lightweight, and durable. Many models have been proposed to describe and capture the behavior of these actuators such as circuit representation, lumped parameter modeling, and physics-based modeling. In this paper, a hybrid between the physics and lumped parameter model is presented which is used to control the actuator. The focus of this paper is on a tubular dielectric elastomer actuator (DEA). The model proposed is validated with experimental data to evaluate its approximation to the physical actuator. The physics model offers the ability to describe how the material properties and actuator's geometry affect the dynamics and behavior of the actuator under different states. The lumped parameter model accounts for physical quantities that may not be fully expressed when formulating the physics-based equations. The discussed model performance is found to have an error less than 10% for the sinusoidal signals discussed. 
    more » « less
  3. Motivated by a wide range of applications, research on agent-based models of contagion propagation over networks has attracted a lot of attention in the literature. Many of the available software systems for simulating such agent-based models require users to download software, build the executable, and set up execution environments. Further, running the resulting executable may require access to high performance computing clusters. Our work describes an open access software system (NetSimS) that works under the “Modeling and Simulation as a Service” (MSaaS) paradigm. It enables users to run simulations by selecting models and parameter values, initial conditions, and networks through a web interface. The system supports a variety of models and networks with millions of nodes and edges. In addition to the simulator, the system includes components that enable users to choose initial conditions for simulations in a variety of ways, to analyze the data generated through simulations, and to produce plots from the data. We describe the components of NetSimS and carry out a performance evaluation of the system. We also discuss two case studies carried out on large networks using the system. NetSimS is a major component within net.science, a cyberinfrastructure for network science. 
    more » « less
  4. null (Ed.)
    Cyber–physical–social systems (CPSS) are physical devices that are embedded in human society and possess highly integrated functionalities of sensing, computing, communication, and control. CPSS rely on their intense collaboration and information sharing through networks to be functioning. In this paper, topology-informed network information dynamics models are proposed to characterize the evolution of information processing capabilities of CPSS nodes in networks. The models are based on a mesoscale probabilistic graph model, where the sensing and computing capabilities of the nodes are captured as the probabilities of correct predictions. A topology-informed vector autoregression model and a latent variable vector autoregression model are proposed to model the correlations between prediction capabilities of nodes as linear functional relationships. A hybrid Gaussian process regression model is also developed to capture both the nonlinear spatial and temporal correlations between nodes. The new information dynamics models are demonstrated and tested with a simulator of CPSS networks. The results show that the topological information of networks can improve the efficiency in constructing the time series models. The network topology also has influences on the prediction capabilities of CPSS. 
    more » « less
  5. Abstract Gravity waves (GWs) and their associated multi‐scale dynamics are known to play fundamental roles in energy and momentum transport and deposition processes throughout the atmosphere. We describe an initial machine learning model—the Compressible Atmosphere Model Network (CAM‐Net). CAM‐Net is trained on high‐resolution simulations by the state‐of‐the‐art model Complex Geometry Compressible Atmosphere Model (CGCAM). Two initial applications to a Kelvin‐Helmholtz instability source and mountain wave generation, propagation, breaking, and Secondary GW (SGW) generation in two wind environments are described here. Results show that CAM‐Net can capture the key 2‐D dynamics modeled by CGCAM with high precision. Spectral characteristics of primary and SGWs estimated by CAM‐Net agree well with those from CGCAM. Our results show that CAM‐Net can achieve a several order‐of‐magnitude acceleration relative to CGCAM without sacrificing accuracy and suggests a potential for machine learning to enable efficient and accurate descriptions of primary and secondary GWs in global atmospheric models. 
    more » « less