skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DESI Survey Validation Spectra Reveal an Increasing Fraction of Recently Quenched Galaxies at z ∼ 1
Abstract We utilize ∼17,000 bright luminous red galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep (∼2.5 hr galaxy −1 exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at 0.4 < z < 1.3. We use Prospector to infer nonparametric star formation histories and identify a significant population of recently quenched galaxies that have joined the quiescent population within the past ∼1 Gyr. The highest-redshift subset (277 at z > 1) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At 0.4 < z < 0.8, we measure the number density of quiescent LRGs, finding that recently quenched galaxies constitute a growing fraction of the massive galaxy population with increasing look-back time. Finally, we quantify the importance of this population among massive ( log ( M ⋆ / M ⊙ ) > 11.2) LRGs by measuring the fraction of stellar mass each galaxy formed in the gigayear before observation, f 1 Gyr . Although galaxies with f 1 Gyr > 0.1 are rare at z ∼ 0.4 (≲0.5% of the population), by z ∼ 0.8, they constitute ∼3% of massive galaxies. Relaxing this threshold, we find that galaxies with f 1 Gyr > 5% constitute ∼10% of the massive galaxy population at z ∼ 0.8. We also identify a small but significant sample of galaxies at z = 1.1–1.3 that formed with f 1 Gyr > 50%, implying that they may be analogs to high-redshift quiescent galaxies that formed on similar timescales. Future analysis of this unprecedented sample promises to illuminate the physical mechanisms that drive the quenching of massive galaxies after cosmic noon.  more » « less
Award ID(s):
1907697
PAR ID:
10457368
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
947
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We measure the rate of environmentally driven star formation quenching in galaxies at z ∼ 1, using eleven massive ($$M\approx 2\times 10^{14}\, \mathrm{M}_\odot$$) galaxy clusters spanning a redshift range 1.0 < z < 1.4 from the GOGREEN sample. We identify three different types of transition galaxies: ‘green valley’ (GV) galaxies identified from their rest-frame (NUV − V) and (V − J) colours; ‘blue quiescent’ (BQ) galaxies, found at the blue end of the quiescent sequence in (U − V) and (V − J) colour; and spectroscopic post-starburst (PSB) galaxies. We measure the abundance of these galaxies as a function of stellar mass and environment. For high-stellar mass galaxies (log M/M⊙ > 10.5) we do not find any significant excess of transition galaxies in clusters, relative to a comparison field sample at the same redshift. It is likely that such galaxies were quenched prior to their accretion in the cluster, in group, filament, or protocluster environments. For lower stellar mass galaxies (9.5 < log M/M⊙ < 10.5) there is a small but significant excess of transition galaxies in clusters, accounting for an additional ∼5–10 per cent of the population compared with the field. We show that our data are consistent with a scenario in which 20–30 per cent of low-mass, star-forming galaxies in clusters are environmentally quenched every Gyr, and that this rate slowly declines from z = 1 to z = 0. While environmental quenching of these galaxies may include a long delay time during which star formation declines slowly, in most cases this must end with a rapid (τ < 1 Gyr) decline in star formation rate. 
    more » « less
  2. The measured ages of massive, quiescent galaxies at z∼3-4 imply that massive galaxies quench as early as z~6. While the number of spectroscopic confirmations of quiescent galaxies at z<3 has increased over the years, there are only a handful at z> 3.5. We report spectroscopic redshifts of one secure (z=3.757) and two tentative (z=3.336 and z=4.673) massive quiescent galaxies with 11 hr of Keck/MOSFIRE K-band observations. Our candidates were selected from the FLAMINGOS-2 Extragalactic Near-Infrared K-band Split (FENIKS) survey, which uses deep Gemini/Flamingos-2 Kb/Kr imaging optimized for increased sensitivity to the characteristic red colors of galaxies at z>3 with a strong Balmer/4000 Å break. The rest-frame UVJ and ugi colors of three out of four quiescent candidates are consistent with 1-2 Gyr old stellar populations. This places these galaxies as the oldest objects at these redshifts, and challenges the notion that quiescent galaxies at z>3 are all recently quenched, post-starburst galaxies. Our spectroscopy shows that the other quiescent-galaxy candidate is a broad-line active galactic nucleus (z=3.594) with strong, redshifted Hbeta+[OIII] emission with a velocity offset >1000 km/s, indicative of a powerful outflow. The star formation history of our highest redshift candidate suggests that its progenitor was already in place by z~7-11, reaching ∼10^11 M⊙ by z~8. These observations reveal the limit of what is possible with deep near-infrared photometry and targeted spectroscopy from the ground and demonstrate that secure spectroscopic confirmation of quiescent galaxies at z>4 is feasible only with JWST. 
    more » « less
  3. Abstract Gravitational lenses can magnify distant galaxies, allowing us to discover and characterize the stellar populations of intrinsically faint, quiescent galaxies that are otherwise extremely difficult to directly observe at high redshift from ground-based telescopes. Here, we present the spectral analysis of two lensed, quiescent galaxies at z ≳ 1 discovered by the ASTRO 3D Galaxy Evolution with Lenses survey: AGEL 1323 ( M * ∼ 10 11.1 M ⊙ , z = 1.016, μ ∼ 14.6) and AGEL 0014 ( M * ∼ 10 11.5 M ⊙ , z = 1.374, μ ∼ 4.3). We measured the age, [Fe/H], and [Mg/Fe] of the two lensed galaxies using deep, rest-frame-optical spectra (S/N ≳40 Å −1 ) obtained on the Keck I telescope. The ages of AGEL 1323 and AGEL 0014 are 5.6 − 0.8 + 0.8 Gyr and 3.1 − 0.3 + 0.8 Gyr, respectively, indicating that most of the stars in the galaxies were formed less than 2 Gyr after the Big Bang. Compared to nearby quiescent galaxies of similar masses, the lensed galaxies have lower [Fe/H] and [Mg/H]. Surprisingly, the two galaxies have comparable [Mg/Fe] to similar-mass galaxies at lower redshifts, despite their old ages. Using a simple analytic chemical evolution model connecting the instantaneously recycled element Mg with the mass-loading factors of outflows averaged over the entire star formation history, we found that the lensed galaxies may have experienced enhanced outflows during their star formation compared to lower-redshift galaxies, which may explain why they quenched early. 
    more » « less
  4. Abstract Using stellar population synthesis models to infer star formation histories (SFHs), we analyze photometry and spectroscopy of a large sample of quiescent galaxies that are members of Sunyaev–Zel’dovich (SZ)-selected galaxy clusters across a wide range of redshifts. We calculate stellar masses and mass-weighted ages for 837 quiescent cluster members at 0.3 < z < 1.4 using rest-frame optical spectra and the Python-based Prospector framework, from 61 clusters in the SPT-GMOS Spectroscopic Survey (0.3 < z < 0.9) and three clusters in the SPT Hi-z cluster sample (1.25 < z < 1.4). We analyze spectra of subpopulations divided into bins of redshift, stellar mass, cluster mass, and velocity-radius phase-space location, as well as by creating composite spectra of quiescent member galaxies. We find that quiescent galaxies in our data set sample a diversity of SFHs, with a median formation redshift (corresponding to the lookback time from the redshift of observation to when a galaxy forms 50% of its mass, t 50 ) of z = 2.8 ± 0.5, which is similar to or marginally higher than that of massive quiescent field and cluster galaxy studies. We also report median age–stellar mass relations for the full sample (age of the universe at t 50 (Gyr) = 2.52 (±0.04)–1.66 (±0.12) log 10 ( M /10 11 M ⊙ )) and recover downsizing trends across stellar mass; we find that massive galaxies in our cluster sample form on aggregate ∼0.75 Gyr earlier than lower-mass galaxies. We also find marginally steeper age–mass relations at high redshifts, and report a bigger difference in formation redshifts across stellar mass for fixed environment, relative to formation redshifts across environment for fixed stellar mass. 
    more » « less
  5. ABSTRACT High-redshift ($$z\sim 1$$) galaxy clusters are the domain where environmental quenching mechanisms are expected to emerge as important factors in the evolution of the quiescent galaxy population. Uncovering these initially subtle effects requires exploring multiple dependencies of quenching across the cluster environment, and through time. We analyse the stellar mass functions (SMFs) of 17 galaxy clusters within the GOGREEN and GCLASS surveys in the range $0.8< z<1.5$, and with $$\log {(M/{\rm {M_\odot }})}>9.5$$. The data are fit simultaneously with a Bayesian model that allows the Schechter function parameters of the quiescent and star-forming populations to vary smoothly with cluster-centric radius and redshift. The model also fits the radial galaxy number density profile of each population, allowing the global quenched fraction to be parametrized as a function of redshift and cluster velocity dispersion. We find the star-forming SMF to not depend on radius or redshift. For the quiescent population however, there is $$\sim 2\sigma$$ evidence for a radial dependence. Outside the cluster core ($$R>0.3\, R_{\rm 200}$$), the quenched fraction above $$\log {(M/{\rm {M_\odot }})}=9.5$$ is $$\sim 40{\rm\,\,per\, cent}$$, and the quiescent SMF is similar in shape to the star-forming field. In contrast, the cluster core has an elevated quenched fraction ($$\sim 70{\rm \,\,per\, cent}$$), and a quiescent SMF similar in shape to the quiescent field population. We explore contributions of ‘early mass-quenching’ and mass-independent ‘environmental-quenching’ models in each of these radial regimes. The core is well described primarily by early mass-quenching, which we interpret as accelerated quenching of massive galaxies in protoclusters, possibly through merger-driven feedback mechanisms. The non-core is better described through mass-independent environmental-quenching of the infalling field population. 
    more » « less